Improving LLM Leaderboards with Psychometrical Methodology
- URL: http://arxiv.org/abs/2501.17200v1
- Date: Mon, 27 Jan 2025 21:21:46 GMT
- Title: Improving LLM Leaderboards with Psychometrical Methodology
- Authors: Denis Federiakin,
- Abstract summary: The rapid development of large language models (LLMs) has necessitated the creation of benchmarks to evaluate their performance.
These benchmarks resemble human tests and surveys, as they consist of questions designed to measure emergent properties in the cognitive behavior of these systems.
However, unlike the well-defined traits and abilities studied in social sciences, the properties measured by these benchmarks are often vaguer and less rigorously defined.
- Score: 0.0
- License:
- Abstract: The rapid development of large language models (LLMs) has necessitated the creation of benchmarks to evaluate their performance. These benchmarks resemble human tests and surveys, as they consist of sets of questions designed to measure emergent properties in the cognitive behavior of these systems. However, unlike the well-defined traits and abilities studied in social sciences, the properties measured by these benchmarks are often vaguer and less rigorously defined. The most prominent benchmarks are often grouped into leaderboards for convenience, aggregating performance metrics and enabling comparisons between models. Unfortunately, these leaderboards typically rely on simplistic aggregation methods, such as taking the average score across benchmarks. In this paper, we demonstrate the advantages of applying contemporary psychometric methodologies - originally developed for human tests and surveys - to improve the ranking of large language models on leaderboards. Using data from the Hugging Face Leaderboard as an example, we compare the results of the conventional naive ranking approach with a psychometrically informed ranking. The findings highlight the benefits of adopting psychometric techniques for more robust and meaningful evaluation of LLM performance.
Related papers
- Beyond the Singular: The Essential Role of Multiple Generations in Effective Benchmark Evaluation and Analysis [10.133537818749291]
Large language models (LLMs) have demonstrated significant utilities in real-world applications.
Benchmark evaluations are crucial for assessing the capabilities of LLMs.
arXiv Detail & Related papers (2025-02-13T03:43:33Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia.
In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models.
This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods.
arXiv Detail & Related papers (2024-11-22T18:59:54Z) - BetterBench: Assessing AI Benchmarks, Uncovering Issues, and Establishing Best Practices [28.70453947993952]
We develop an assessment framework considering 46 best practices across an AI benchmark's lifecycle and evaluate 24 AI benchmarks against it.
We find that there exist large quality differences and that commonly used benchmarks suffer from significant issues.
arXiv Detail & Related papers (2024-11-20T02:38:24Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
Modern language models (LMs) pose a new challenge in capability assessment.
To be confident in our metrics, we need a new discipline of model metrology.
arXiv Detail & Related papers (2024-07-22T17:52:12Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Bench is a principled generation benchmark designed to thoroughly evaluate nine distinct capabilities of LMs across 77 diverse tasks.
A key feature of the BiGGen Bench is its use of instance-specific evaluation criteria, closely mirroring the nuanced discernment of human evaluation.
arXiv Detail & Related papers (2024-06-09T12:30:30Z) - Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators [48.54465599914978]
Large Language Models (LLMs) have demonstrated promising capabilities as automatic evaluators in assessing the quality of generated natural language.
LLMs still exhibit biases in evaluation and often struggle to generate coherent evaluations that align with human assessments.
We introduce Pairwise-preference Search (PAIRS), an uncertainty-guided search-based rank aggregation method that employs LLMs to conduct pairwise comparisons locally and efficiently ranks candidate texts globally.
arXiv Detail & Related papers (2024-03-25T17:11:28Z) - When Benchmarks are Targets: Revealing the Sensitivity of Large Language Model Leaderboards [9.751405901938895]
We show that under existing leaderboards, the relative performance of LLMs is highly sensitive to minute details.
We show that for popular multiple-choice question benchmarks (e.g., MMLU), minor perturbations to the benchmark, such as changing the order of choices or the method of answer selection, result in changes in rankings up to 8 positions.
arXiv Detail & Related papers (2024-02-01T19:12:25Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
Large language models(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity.
To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs.
We discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results.
arXiv Detail & Related papers (2023-11-03T14:59:54Z) - Vote'n'Rank: Revision of Benchmarking with Social Choice Theory [7.224599819499157]
This paper proposes Vote'n'Rank, a framework for ranking systems in multi-task benchmarks under the principles of the social choice theory.
We demonstrate that our approach can be efficiently utilised to draw new insights on benchmarking in several ML sub-fields.
arXiv Detail & Related papers (2022-10-11T20:19:11Z) - The Benchmark Lottery [114.43978017484893]
"A benchmark lottery" describes the overall fragility of the machine learning benchmarking process.
We show that the relative performance of algorithms may be altered significantly simply by choosing different benchmark tasks.
arXiv Detail & Related papers (2021-07-14T21:08:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.