Singularity and universality from von Neumann to Rényi entanglement entropy and disorder operator in Motzkin chains
- URL: http://arxiv.org/abs/2501.17368v4
- Date: Tue, 18 Feb 2025 13:44:36 GMT
- Title: Singularity and universality from von Neumann to Rényi entanglement entropy and disorder operator in Motzkin chains
- Authors: Jianyu Wang, Zenan Liu, Zheng Yan, Congjun Wu,
- Abstract summary: We show that the scaling of the disorder operators also follows $logl$ as the leading behavior, matching that of the R'enyi entropy.
We propose that the coefficient of the term $logl$ is a universal constant shared by both the R'enyi entropies and disorder operators.
- Score: 13.286899418567023
- License:
- Abstract: The R\'enyi entanglement entropy is widely used in studying quantum entanglement properties in strongly correlated systems, whose analytic continuation as the R\'enyi index $n \to 1$ is often believed to yield the von Neumann entanglement entropy. However, earlier findings indicate that this process exhibits a singularity for the colored Motzkin spin chain problem, leading to different scaling behaviors of $\sim \sqrt{l}$ and $\sim \log{l}$ for the von Neumann and R\'enyi entropies, respectively. Our analytical and numerical calculations confirm this transition, which can be explained by the exponentially increasing density of states in the entanglement spectrum that we extract numerically. Disorder operators are further employed under various symmetries to study such a system. Both analytical and numerical results demonstrate that the scaling of the disorder operators also follows $\log{l}$ as the leading behavior, matching that of the R\'enyi entropy. We propose that the coefficient of the term $\log{l}$ is a universal constant shared by both the R\'enyi entropies and disorder operators. This universal constant could potentially help capture the underlying constraint physics of Motzkin walks.
Related papers
- Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals [52.154685604660465]
We investigate a family of gradient flows of positive and probability measures, focusing on the Hellinger-Kantorovich (HK) geometry.
A central contribution is a complete characterization of global exponential decay behaviors of entropy functionals under Otto-Wasserstein and Hellinger-type gradient flows.
arXiv Detail & Related papers (2025-01-28T16:17:09Z) - More on the Operator Space Entanglement (OSE): Rényi OSE, revivals, and integrability breaking [0.0]
We investigate the dynamics of the R'enyi Operator Spaceanglement ($OSE$) entropies $S_n$ across several one-dimensional integrable and chaotic models.
Our numerical results reveal that the R'enyi $OSE$ entropies of diagonal operators with nonzero trace saturate at long times.
In finite-size integrable systems, $S_n$ exhibit strong revivals, which are washed out when integrability is broken.
arXiv Detail & Related papers (2024-10-24T17:17:29Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
We show that PCA becomes computationally hard at a critical value of the signal's magnitude.
We define a new set of objects, which provide an explicit, near-orthogonal basis for invariants of a given degree.
It also lets us analyze a new problem of distinguishing between different ensembles.
arXiv Detail & Related papers (2024-04-29T14:33:24Z) - $\widetilde{O}(N^2)$ Representation of General Continuous Anti-symmetric
Function [41.1983944775617]
In quantum mechanics, the wave function of fermion systems such as many-body electron systems are anti-symmetric and continuous.
We prove that our ansatz can represent any AS continuous functions, and can accommodate the determinant-based structure proposed by Hutter.
arXiv Detail & Related papers (2024-02-23T07:59:41Z) - Finite Entanglement Entropy in String Theory [0.0]
We show that the tachyonic contributions to the orbifold partition function can be appropriately summed and analytically continued to an expression that is finite in the physical region $0 N leq 1$
We discuss the implications of the finiteness of the entanglement entropy for the information paradox, quantum gravity, and holography.
arXiv Detail & Related papers (2023-06-01T17:59:59Z) - Local Intrinsic Dimensional Entropy [29.519376857728325]
Most entropy measures depend on the spread of the probability distribution over the sample space $mathcalX|$.
In this work, we question the role of cardinality and distribution spread in defining entropy measures for continuous spaces.
We find that the average value of the local intrinsic dimension of a distribution, denoted as ID-Entropy, can serve as a robust entropy measure for continuous spaces.
arXiv Detail & Related papers (2023-04-05T04:36:07Z) - Towards Entanglement Entropy of Random Large-N Theories [0.0]
We use the replica approach and the notion of shifted Matsubara frequency to compute von Neumann and R'enyi entanglement entropies.
We demonstrate the flexibility of the method by applying it to examples of a two-site problem in presence of decoherence.
arXiv Detail & Related papers (2023-03-03T18:21:54Z) - Geometric relative entropies and barycentric Rényi divergences [16.385815610837167]
monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
We show that monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
arXiv Detail & Related papers (2022-07-28T17:58:59Z) - R\'enyi divergence inequalities via interpolation, with applications to
generalised entropic uncertainty relations [91.3755431537592]
We investigate quantum R'enyi entropic quantities, specifically those derived from'sandwiched' divergence.
We present R'enyi mutual information decomposition rules, a new approach to the R'enyi conditional entropy tripartite chain rules and a more general bipartite comparison.
arXiv Detail & Related papers (2021-06-19T04:06:23Z) - Theory of Ergodic Quantum Processes [0.0]
We consider general ergodic sequences of quantum channels with arbitrary correlations and non-negligible decoherence.
We compute the entanglement spectrum across any cut, by which the bipartite entanglement entropy can be computed exactly.
Other physical implications of our results are that most Floquet phases of matter are metastable and that noisy random circuits in the large depth limit will be trivial as far as their quantum entanglement is concerned.
arXiv Detail & Related papers (2020-04-29T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.