Readout-induced leakage of the fluxonium qubit
- URL: http://arxiv.org/abs/2501.17807v1
- Date: Wed, 29 Jan 2025 17:53:34 GMT
- Title: Readout-induced leakage of the fluxonium qubit
- Authors: Aayam Bista, Matthew Thibodeau, Ke Nie, Kaicheung Chow, Bryan K. Clark, Angela Kou,
- Abstract summary: Dispersive readout is widely used to perform high-fidelity measurement of superconducting qubits.
We show that resonator photons induce transitions in the fluxonium both within and outside the qubit subspace.
We numerically model our system and find that coupling the fluxonium-resonator system to an external spurious mode is necessary to explain observed non-QND effects.
- Score: 0.5277756703318045
- License:
- Abstract: Dispersive readout is widely used to perform high-fidelity measurement of superconducting qubits. Much work has been focused on the qubit readout fidelity, which depends on the achievable signal-to-noise ratio and the qubit relaxation time. As groups have pushed to increase readout fidelity by increasing readout photon number, dispersive readout has been shown to strongly affect the post-measurement qubit state. Such effects hinder the effectiveness of quantum error correction, which requires measurements that both have high readout fidelity and are quantum non-demolition (QND). Here, we experimentally investigate non-QND effects in the fluxonium. We map out the state evolution of fluxonium qubits in the presence of resonator photons and observe that these photons induce transitions in the fluxonium both within and outside the qubit subspace. We numerically model our system and find that coupling the fluxonium-resonator system to an external spurious mode is necessary to explain observed non-QND effects.
Related papers
- Quantum interferences and gates with emitter-based coherent photon sources [0.0]
In 2019, it was shown that the emitted single photon states often include coherence with the vacuum component.
We show how such photon-number coherence alters quantum interference experiments.
We illustrate the impact on quantum protocols by evidencing modifications in heralding efficiency and fidelity of two-qubit gates.
arXiv Detail & Related papers (2024-01-02T12:29:49Z) - Flux-pulse-assisted Readout of a Fluxonium Qubit [0.0]
We propose to exploit the features in the dispersive shift to improve qubit readout.
Specifically, we report on theoretical simulations showing improved readout times and error rates by performing the readout at a flux bias point.
We expand the scheme to include different error channels, and show that with an integration time of 155 ns, flux-pulse-assisted readout offers about 5 times improvement in the signal to noise ratio.
arXiv Detail & Related papers (2023-09-29T14:43:43Z) - Beyond-adiabatic Quantum Admittance of a Semiconductor Quantum Dot at High Frequencies: Rethinking Reflectometry as Polaron Dynamics [0.0]
We develop a self-consistent quantum master equation formalism to obtain the admittance of a quantum dot tunnel-coupled to a charge reservoir.
We describe two new photon-mediated regimes: Floquet broadening, determined by the dressing of the QD states, and broadening determined by photon loss in the system.
arXiv Detail & Related papers (2023-07-31T14:46:43Z) - Qubit readouts enabled by qubit cloaking [49.1574468325115]
Time-dependent drives play a crucial role in quantum computing efforts.
They enable single-qubit control, entangling logical operations, as well as qubit readout.
Qubit cloaking was introduced in Lled'o, Dassonneville, et al.
arXiv Detail & Related papers (2023-05-01T15:58:25Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Dynamics of Transmon Ionization [94.70553167084388]
We numerically explore the dynamics of a driven transmon-resonator system under strong and nearly resonant measurement drives.
We find clear signatures of transmon ionization where the qubit escapes out of its cosine potential.
arXiv Detail & Related papers (2022-03-21T18:00:15Z) - Regimes of Cavity-QED under Incoherent Excitation: From Weak to Deep
Strong Coupling [0.0]
A two-level atom interacting with a quantized single-mode electromagnetic field is described by the quantum Rabi model (QRM)
Here, we study the photon flux emission rate of this system under the incoherent excitation of the two-level atom for any light-matter interaction strength.
arXiv Detail & Related papers (2021-12-16T14:36:54Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.