InnerThoughts: Disentangling Representations and Predictions in Large Language Models
- URL: http://arxiv.org/abs/2501.17994v1
- Date: Wed, 29 Jan 2025 21:01:44 GMT
- Title: InnerThoughts: Disentangling Representations and Predictions in Large Language Models
- Authors: Didier Chételat, Joseph Cotnareanu, Rylee Thompson, Yingxue Zhang, Mark Coates,
- Abstract summary: We propose to learn a small separate neural network predictor module on a collection of training questions.
In effect, such a framework disentangles the representational abilities of LLMs from their predictive abilities.
- Score: 20.39568933276831
- License:
- Abstract: Large language models (LLMs) contain substantial factual knowledge which is commonly elicited by multiple-choice question-answering prompts. Internally, such models process the prompt through multiple transformer layers, building varying representations of the problem within its hidden states. Ultimately, however, only the hidden state corresponding to the final layer and token position are used to predict the answer label. In this work, we propose instead to learn a small separate neural network predictor module on a collection of training questions, that take the hidden states from all the layers at the last temporal position as input and outputs predictions. In effect, such a framework disentangles the representational abilities of LLMs from their predictive abilities. On a collection of hard benchmarks, our method achieves considerable improvements in performance, sometimes comparable to supervised fine-tuning procedures, but at a fraction of the computational cost.
Related papers
- FIRP: Faster LLM inference via future intermediate representation prediction [54.897493351694195]
FIRP generates multiple tokens instead of one at each decoding step.
We conduct extensive experiments, showing a speedup ratio of 1.9x-3x in several models and datasets.
arXiv Detail & Related papers (2024-10-27T15:53:49Z) - Generalization v.s. Memorization: Tracing Language Models' Capabilities Back to Pretraining Data [76.90128359866462]
We introduce an extended concept of memorization, distributional memorization, which measures the correlation between the output probabilities and the pretraining data frequency.
We show that memorization plays a larger role in simpler, knowledge-intensive tasks, while generalization is the key for harder, reasoning-based tasks.
arXiv Detail & Related papers (2024-07-20T21:24:40Z) - Entropy Guided Extrapolative Decoding to Improve Factuality in Large Language Models [55.45444773200529]
Large language models (LLMs) exhibit impressive natural language capabilities but suffer from hallucination.
Recent work has focused on decoding techniques to improve factuality during inference.
arXiv Detail & Related papers (2024-04-14T19:45:35Z) - Unveiling Multilinguality in Transformer Models: Exploring Language
Specificity in Feed-Forward Networks [12.7259425362286]
We investigate how multilingual models might leverage key-value memories.
For autoregressive models trained on two or more languages, do all neurons (across layers) respond equally to all languages?
Our findings reveal that the layers closest to the network's input or output tend to exhibit more language-specific behaviour compared to the layers in the middle.
arXiv Detail & Related papers (2023-10-24T06:45:00Z) - Opening the Black Box: Analyzing Attention Weights and Hidden States in
Pre-trained Language Models for Non-language Tasks [0.8889304968879164]
We apply a pre-trained language model to constrained arithmetic problems with hierarchical structure, to analyze their attention weight scores and hidden states.
The investigation reveals promising results, with the model addressing hierarchical problems in a moderately structured manner, similar to human problem-solving strategies.
The attention analysis allows us to hypothesize that the model can generalize to longer sequences in ListOps dataset, a conclusion later confirmed through testing on sequences longer than those in the training set.
arXiv Detail & Related papers (2023-06-21T11:48:07Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
A possible explanation for the impressive performance of masked language model (MLM)-training is that such models have learned to represent the syntactic structures prevalent in NLP pipelines.
In this paper, we propose a different explanation: pre-trains succeed on downstream tasks almost entirely due to their ability to model higher-order word co-occurrence statistics.
Our results show that purely distributional information largely explains the success of pre-training, and underscore the importance of curating challenging evaluation datasets that require deeper linguistic knowledge.
arXiv Detail & Related papers (2021-04-14T06:30:36Z) - SML: a new Semantic Embedding Alignment Transformer for efficient
cross-lingual Natural Language Inference [71.57324258813674]
The ability of Transformers to perform with precision a variety of tasks such as question answering, Natural Language Inference (NLI) or summarising, have enable them to be ranked as one of the best paradigms to address this kind of tasks at present.
NLI is one of the best scenarios to test these architectures, due to the knowledge required to understand complex sentences and established a relation between a hypothesis and a premise.
In this paper, we propose a new architecture, siamese multilingual transformer, to efficiently align multilingual embeddings for Natural Language Inference.
arXiv Detail & Related papers (2021-03-17T13:23:53Z) - Unnatural Language Inference [48.45003475966808]
We find that state-of-the-art NLI models, such as RoBERTa and BART, are invariant to, and sometimes even perform better on, examples with randomly reordered words.
Our findings call into question the idea that our natural language understanding models, and the tasks used for measuring their progress, genuinely require a human-like understanding of syntax.
arXiv Detail & Related papers (2020-12-30T20:40:48Z) - REALM: Retrieval-Augmented Language Model Pre-Training [37.3178586179607]
We augment language model pre-training with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus such as Wikipedia.
For the first time, we show how to pre-train such a knowledge retriever in an unsupervised manner.
We demonstrate the effectiveness of Retrieval-Augmented Language Model pre-training (REALM) by fine-tuning on the challenging task of Open-domain Question Answering (Open-QA)
arXiv Detail & Related papers (2020-02-10T18:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.