Normative Evaluation of Large Language Models with Everyday Moral Dilemmas
- URL: http://arxiv.org/abs/2501.18081v1
- Date: Thu, 30 Jan 2025 01:29:46 GMT
- Title: Normative Evaluation of Large Language Models with Everyday Moral Dilemmas
- Authors: Pratik S. Sachdeva, Tom van Nuenen,
- Abstract summary: We evaluate large language models (LLMs) on complex, everyday moral dilemmas sourced from the "Am I the Asshole" (AITA) community on Reddit.
Our results demonstrate that large language models exhibit distinct patterns of moral judgment, varying substantially from human evaluations on the AITA subreddit.
- Score: 0.0
- License:
- Abstract: The rapid adoption of large language models (LLMs) has spurred extensive research into their encoded moral norms and decision-making processes. Much of this research relies on prompting LLMs with survey-style questions to assess how well models are aligned with certain demographic groups, moral beliefs, or political ideologies. While informative, the adherence of these approaches to relatively superficial constructs tends to oversimplify the complexity and nuance underlying everyday moral dilemmas. We argue that auditing LLMs along more detailed axes of human interaction is of paramount importance to better assess the degree to which they may impact human beliefs and actions. To this end, we evaluate LLMs on complex, everyday moral dilemmas sourced from the "Am I the Asshole" (AITA) community on Reddit, where users seek moral judgments on everyday conflicts from other community members. We prompted seven LLMs to assign blame and provide explanations for over 10,000 AITA moral dilemmas. We then compared the LLMs' judgments and explanations to those of Redditors and to each other, aiming to uncover patterns in their moral reasoning. Our results demonstrate that large language models exhibit distinct patterns of moral judgment, varying substantially from human evaluations on the AITA subreddit. LLMs demonstrate moderate to high self-consistency but low inter-model agreement. Further analysis of model explanations reveals distinct patterns in how models invoke various moral principles. These findings highlight the complexity of implementing consistent moral reasoning in artificial systems and the need for careful evaluation of how different models approach ethical judgment. As LLMs continue to be used in roles requiring ethical decision-making such as therapists and companions, careful evaluation is crucial to mitigate potential biases and limitations.
Related papers
- ClarityEthic: Explainable Moral Judgment Utilizing Contrastive Ethical Insights from Large Language Models [30.301864398780648]
We introduce a novel moral judgment approach called textitEthic that leverages LLMs' reasoning ability and contrastive learning to uncover relevant social norms.
Our method outperforms state-of-the-art approaches in moral judgment tasks.
arXiv Detail & Related papers (2024-12-17T12:22:44Z) - Moral Persuasion in Large Language Models: Evaluating Susceptibility and Ethical Alignment [3.8916312075738273]
Large language models (LLMs) can be influenced by prompting them to alter their initial decisions and align them with established ethical frameworks.
Our study is based on two experiments designed to assess the susceptibility of LLMs to moral persuasion.
arXiv Detail & Related papers (2024-11-18T16:59:59Z) - Large-scale moral machine experiment on large language models [0.0]
We evaluate moral judgments across 52 different Large Language Models (LLMs) in autonomous driving scenarios.
proprietary models and open-source models exceeding 10 billion parameters demonstrated relatively close alignment with human judgments.
However, model updates did not consistently improve alignment with human preferences, and many LLMs showed excessive emphasis on specific ethical principles.
arXiv Detail & Related papers (2024-11-11T08:36:49Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.
This paper shows that the ideological stance of an LLM appears to reflect the worldview of its creators.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Language Model Alignment in Multilingual Trolley Problems [138.5684081822807]
Building on the Moral Machine experiment, we develop a cross-lingual corpus of moral dilemma vignettes in over 100 languages called MultiTP.
Our analysis explores the alignment of 19 different LLMs with human judgments, capturing preferences across six moral dimensions.
We discover significant variance in alignment across languages, challenging the assumption of uniform moral reasoning in AI systems.
arXiv Detail & Related papers (2024-07-02T14:02:53Z) - MoralBench: Moral Evaluation of LLMs [34.43699121838648]
This paper introduces a novel benchmark designed to measure and compare the moral reasoning capabilities of large language models (LLMs)
We present the first comprehensive dataset specifically curated to probe the moral dimensions of LLM outputs.
Our methodology involves a multi-faceted approach, combining quantitative analysis with qualitative insights from ethics scholars to ensure a thorough evaluation of model performance.
arXiv Detail & Related papers (2024-06-06T18:15:01Z) - Exploring and steering the moral compass of Large Language Models [55.2480439325792]
Large Language Models (LLMs) have become central to advancing automation and decision-making across various sectors.
This study proposes a comprehensive comparative analysis of the most advanced LLMs to assess their moral profiles.
arXiv Detail & Related papers (2024-05-27T16:49:22Z) - Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models [61.45529177682614]
We challenge the prevailing constrained evaluation paradigm for values and opinions in large language models.
We show that models give substantively different answers when not forced.
We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
arXiv Detail & Related papers (2024-02-26T18:00:49Z) - Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories? [78.3738172874685]
Making moral judgments is an essential step toward developing ethical AI systems.
Prevalent approaches are mostly implemented in a bottom-up manner, which uses a large set of annotated data to train models based on crowd-sourced opinions about morality.
This work proposes a flexible top-down framework to steer (Large) Language Models (LMs) to perform moral reasoning with well-established moral theories from interdisciplinary research.
arXiv Detail & Related papers (2023-08-29T15:57:32Z) - Scruples: A Corpus of Community Ethical Judgments on 32,000 Real-Life
Anecdotes [72.64975113835018]
Motivated by descriptive ethics, we investigate a novel, data-driven approach to machine ethics.
We introduce Scruples, the first large-scale dataset with 625,000 ethical judgments over 32,000 real-life anecdotes.
Our dataset presents a major challenge to state-of-the-art neural language models, leaving significant room for improvement.
arXiv Detail & Related papers (2020-08-20T17:34:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.