Tensor Completion for Surrogate Modeling of Material Property Prediction
- URL: http://arxiv.org/abs/2501.18137v1
- Date: Thu, 30 Jan 2025 04:59:21 GMT
- Title: Tensor Completion for Surrogate Modeling of Material Property Prediction
- Authors: Shaan Pakala, Dawon Ahn, Evangelos Papalexakis,
- Abstract summary: We model the optimization of certain material properties as a tensor completion problem.
We leverage the structure of our datasets and navigate the vast number of combinations of material configurations.
Across a variety of material property prediction tasks, our experiments show tensor completion methods achieving 10-20% decreased error.
- Score: 0.5735035463793009
- License:
- Abstract: When designing materials to optimize certain properties, there are often many possible configurations of designs that need to be explored. For example, the materials' composition of elements will affect properties such as strength or conductivity, which are necessary to know when developing new materials. Exploring all combinations of elements to find optimal materials becomes very time consuming, especially when there are more design variables. For this reason, there is growing interest in using machine learning (ML) to predict a material's properties. In this work, we model the optimization of certain material properties as a tensor completion problem, to leverage the structure of our datasets and navigate the vast number of combinations of material configurations. Across a variety of material property prediction tasks, our experiments show tensor completion methods achieving 10-20% decreased error compared with baseline ML models such as GradientBoosting and Multilayer Perceptron (MLP), while maintaining similar training speed.
Related papers
- DARWIN 1.5: Large Language Models as Materials Science Adapted Learners [46.7259033847682]
We propose DARWIN 1.5, the largest open-source large language model tailored for materials science.
DARWIN eliminates the need for task-specific descriptors and enables a flexible, unified approach to material property prediction and discovery.
Our approach integrates 6M material domain papers and 21 experimental datasets from 49,256 materials across modalities while enabling cross-task knowledge transfer.
arXiv Detail & Related papers (2024-12-16T16:51:27Z) - Material Property Prediction with Element Attribute Knowledge Graphs and Multimodal Representation Learning [8.523289773617503]
We build an element property knowledge graph and utilize an embedding model to encode the element attributes within the knowledge graph.
A multimodal fusion framework, ESNet, integrates element property features with crystal structure features to generate joint multimodal representations.
This provides a more comprehensive perspective for predicting the performance of crystalline materials.
arXiv Detail & Related papers (2024-11-13T08:07:21Z) - Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - Data-efficient and Interpretable Inverse Materials Design using a Disentangled Variational Autoencoder [2.563209727695243]
Inverse materials design has proven successful in accelerating novel material discovery.
Many inverse materials design methods use unsupervised learning where a latent space is learned to offer a compact description of materials representations.
Here, we present a semi-supervised learning approach based on a disentangled variational autoencoder to learn a probabilistic relationship between features, latent variables and target properties.
arXiv Detail & Related papers (2024-09-10T02:21:13Z) - VAE for Modified 1-Hot Generative Materials Modeling, A Step Towards
Inverse Material Design [0.0]
In inverse material design, where one seeks to design a material with a prescribed set of properties, a significant challenge is ensuring synthetic viability of a proposed new material.
We encode an implicit dataset relationships, namely that certain materials can be decomposed into other ones in the dataset.
We present a VAE model capable of preserving this property in the latent space and generating new samples with the same.
arXiv Detail & Related papers (2023-12-25T04:04:47Z) - Alchemist: Parametric Control of Material Properties with Diffusion
Models [51.63031820280475]
Our method capitalizes on the generative prior of text-to-image models known for photorealism.
We show the potential application of our model to material edited NeRFs.
arXiv Detail & Related papers (2023-12-05T18:58:26Z) - Multimodal Learning for Materials [7.167520424757711]
We introduce Multimodal Learning for Materials (MultiMat), which enables self-supervised multi-modality training of foundation models for materials.
We demonstrate our framework's potential using data from the Materials Project database on multiple axes.
arXiv Detail & Related papers (2023-11-30T18:35:29Z) - Towards Symmetry-Aware Generation of Periodic Materials [64.21777911715267]
We propose SyMat, a novel material generation approach that can capture physical symmetries of periodic material structures.
SyMat generates atom types and lattices of materials through generating atom type sets, lattice lengths and lattice angles with a variational auto-encoder model.
We show that SyMat is theoretically invariant to all symmetry transformations on materials and demonstrate that SyMat achieves promising performance on random generation and property optimization tasks.
arXiv Detail & Related papers (2023-07-06T01:05:34Z) - A Comprehensive and Versatile Multimodal Deep Learning Approach for
Predicting Diverse Properties of Advanced Materials [0.9517427900627922]
We present a multimodal deep learning framework for predicting physical properties of a 10-dimensional acrylic polymer composite material.
Our approach handles an 18-dimensional complexity, with 10 compositional inputs and 8 property outputs, successfully predicting 913,680 property data points across 114,210 composition conditions.
This study advances future research on different materials and the development of more sophisticated models, drawing us closer to the ultimate goal of predicting all properties of all materials.
arXiv Detail & Related papers (2023-03-29T02:42:17Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
Deep generative models have emerged as a popular machine learning-based approach for inverse problems in the life sciences.
These problems often require sampling new designs that satisfy multiple properties of interest in addition to learning the data distribution.
arXiv Detail & Related papers (2022-10-19T19:04:45Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.