Extending the design space of ontologization practices: Using bCLEARer as an example
- URL: http://arxiv.org/abs/2501.18296v1
- Date: Thu, 30 Jan 2025 12:16:11 GMT
- Title: Extending the design space of ontologization practices: Using bCLEARer as an example
- Authors: Chris Partridge, Andrew Mitchell, Sergio de Cesare, John Beverley,
- Abstract summary: Our aim is to outline how the design space for the ontologization process is richer than current practice would suggest.
We point out that engineering processes as well as products need to be designed - and identify some components of the design.
- Score: 0.26999000177990923
- License:
- Abstract: Our aim in this paper is to outline how the design space for the ontologization process is richer than current practice would suggest. We point out that engineering processes as well as products need to be designed - and identify some components of the design. We investigate the possibility of designing a range of radically new practices, providing examples of the new practices from our work over the last three decades with an outlier methodology, bCLEARer. We also suggest that setting an evolutionary context for ontologization helps one to better understand the nature of these new practices and provides the conceptual scaffolding that shapes fertile processes. Where this evolutionary perspective positions digitalization (the evolutionary emergence of computing technologies) as the latest step in a long evolutionary trail of information transitions. This reframes ontologization as a strategic tool for leveraging the emerging opportunities offered by digitalization.
Related papers
- X-IL: Exploring the Design Space of Imitation Learning Policies [20.770730972159242]
We present X-IL, an open-source framework designed to explore the vast design space for imitation learning policies.
The framework's modular design enables seamless swapping of policy components, such as backbones (e.g., Transformer, Mamba, xLSTM) and policy optimization techniques.
This study serves as both a practical reference for practitioners and a foundation for guiding future research in imitation learning.
arXiv Detail & Related papers (2025-02-17T21:33:56Z) - Attention Please: What Transformer Models Really Learn for Process Prediction [0.0]
This paper examines whether the attention scores of a transformer based next-activity prediction model can serve as an explanation for its decision-making.
We find that attention scores in next-activity prediction models can serve as explainers and exploit this fact in two proposed graph-based explanation approaches.
arXiv Detail & Related papers (2024-08-12T08:20:38Z) - Systematic Mapping Protocol -- UX Design role in software development
process [55.2480439325792]
We present a systematic mapping protocol for investigating the role of the UX designer in the software development process.
We define the research questions, scope, sources, search strategy, selection criteria, data extraction, and analysis methods that we will use to conduct the mapping study.
arXiv Detail & Related papers (2024-02-20T16:56:46Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
In this paper, we propose an inherently interpretable method, named Transferable Prototype Learning ( TCPL)
To achieve this goal, we design a hierarchically prototypical module that transfers categorical basic concepts from the source domain to the target domain and learns domain-shared prototypes for explaining the underlying reasoning process.
Comprehensive experiments show that the proposed method can not only provide effective and intuitive explanations but also outperform previous state-of-the-arts.
arXiv Detail & Related papers (2023-10-12T06:36:41Z) - Discovering General Reinforcement Learning Algorithms with Adversarial
Environment Design [54.39859618450935]
We show that it is possible to meta-learn update rules, with the hope of discovering algorithms that can perform well on a wide range of RL tasks.
Despite impressive initial results from algorithms such as Learned Policy Gradient (LPG), there remains a gap when these algorithms are applied to unseen environments.
In this work, we examine how characteristics of the meta-supervised-training distribution impact the performance of these algorithms.
arXiv Detail & Related papers (2023-10-04T12:52:56Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Methodology for Holistic Reference Modeling in Systems Engineering [0.0]
This paper presents a holistic approach to describe reference models across different views and levels.
Benefits include an end-to-end traceability of the capability coverage with performance parameters considered already at the starting point of the reference design.
arXiv Detail & Related papers (2022-11-21T13:41:07Z) - ERNIE-Layout: Layout Knowledge Enhanced Pre-training for Visually-rich
Document Understanding [52.3895498789521]
We propose ERNIE, a novel document pre-training solution with layout knowledge enhancement.
We first rearrange input sequences in the serialization stage, then present a correlative pre-training task, reading order prediction, and learn the proper reading order of documents.
Experimental results show ERNIE achieves superior performance on various downstream tasks, setting new state-of-the-art on key information, and document question answering.
arXiv Detail & Related papers (2022-10-12T12:59:24Z) - Dynamically Grown Generative Adversarial Networks [111.43128389995341]
We propose a method to dynamically grow a GAN during training, optimizing the network architecture and its parameters together with automation.
The method embeds architecture search techniques as an interleaving step with gradient-based training to periodically seek the optimal architecture-growing strategy for the generator and discriminator.
arXiv Detail & Related papers (2021-06-16T01:25:51Z) - Explainable Artificial Intelligence for Process Mining: A General
Overview and Application of a Novel Local Explanation Approach for Predictive
Process Monitoring [0.0]
This study proposes a conceptual framework sought to establish and promote understanding of decision-making environment.
This study defines the local regions from the validation dataset by using the intermediate latent space representations.
The adopted deep learning classifier achieves a good performance with the Area Under the ROC Curve of 0.94.
arXiv Detail & Related papers (2020-09-04T10:28:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.