Probing Non-Equilibrium Topological Order on a Quantum Processor
- URL: http://arxiv.org/abs/2501.18461v1
- Date: Thu, 30 Jan 2025 16:25:33 GMT
- Title: Probing Non-Equilibrium Topological Order on a Quantum Processor
- Authors: M. Will, T. A. Cochran, E. Rosenberg, B. Jobst, N. M Eassa, P. Roushan, M. Knap, A. Gammon-Smith, F. Pollmann,
- Abstract summary: We realize a Floquet topologically ordered state theoretically proposed in Ref. [6], image the characteristic dynamics of its chiral edge modes, and characterize its emergent anyonic excitations.
Our work demonstrates that quantum processors can provide key insights into the thus-far largely unexplored landscape of highly entangled non-equilibrium phases of matter.
- Score: 0.0
- License:
- Abstract: Out-of-equilibrium phases in many-body systems constitute a new paradigm in quantum matter - they exhibit dynamical properties that may otherwise be forbidden by equilibrium thermodynamics. Among these non-equilibrium phases are periodically driven (Floquet) systems [1-5], that are generically difficult to simulate classically due to their high entanglement. Using an array of superconducting qubits, we realize a Floquet topologically ordered state theoretically proposed in Ref. [6], image the characteristic dynamics of its chiral edge modes, and characterize its emergent anyonic excitations. Devising an interferometric algorithm allows us to introduce and measure a bulk topological invariant to probe the dynamical transmutation of anyons for system sizes up to 58 qubits. Our work demonstrates that quantum processors can provide key insights into the thus-far largely unexplored landscape of highly entangled non-equilibrium phases of matter.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Long-lived topological time-crystalline order on a quantum processor [16.781279220543517]
Topologically ordered phases of matter elude Landau's symmetry-breaking theory.
We report the observation of signatures of such a phenomenon with programmable superconducting qubits arranged on a square lattice.
We further connect the observed dynamics to the underlying topological order by measuring a nonzero topological entanglement entropy.
arXiv Detail & Related papers (2024-01-09T03:20:15Z) - Emerging topological characterization in non-equilibrium states of quenched Kitaev chains [0.0]
Topological characteristics of quantum systems are determined by the closing of a gap.
The dynamical quantum phase transition (DQPT) during quantum real-time evolution has emerged as a nonequilibrium analog to the quantum phase transition (QPT)
arXiv Detail & Related papers (2023-11-14T10:26:15Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Topological Entanglement Stabilization in Superconducting Quantum
Circuits [0.0]
Topological properties of quantum systems are one of the most intriguing emerging phenomena in condensed matter physics.
We propose a concept of using topological modes to stabilize fully entangled quantum states.
We show that entanglement remains stable against parameter fluctuations in the topologically non-trivial regime.
arXiv Detail & Related papers (2022-05-18T17:45:15Z) - Entanglement propagation and dynamics in non-additive quantum systems [0.0]
Long-range interacting quantum systems are promising candidates for quantum technological applications.
We describe the dynamics of the entanglement entropy in many diverging-body quantum systems.
Quantitative predictions on the shape and timescales of entanglement propagation are made.
arXiv Detail & Related papers (2021-12-21T19:07:17Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Analyzing non-equilibrium quantum states through snapshots with
artificial neural networks [0.0]
Current quantum simulation experiments are starting to explore non-equilibrium many-body dynamics in previously inaccessible regimes.
Using machine learning techniques, we investigate the dynamics and in particular the thermalization behavior of an interacting quantum system.
A neural network is trained to distinguish non-equilibrium from thermal equilibrium data, and the network performance serves as a probe for the thermalization behavior of the system.
arXiv Detail & Related papers (2020-12-21T18:59:21Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.