Review and Recommendations for using Artificial Intelligence in Intracoronary Optical Coherence Tomography Analysis
- URL: http://arxiv.org/abs/2501.18614v1
- Date: Fri, 24 Jan 2025 16:06:32 GMT
- Title: Review and Recommendations for using Artificial Intelligence in Intracoronary Optical Coherence Tomography Analysis
- Authors: Xu Chen, Yuan Huang, Benn Jessney, Jason Sangha, Sophie Gu, Carola-Bibiane Schönlieb, Martin Bennett, Michael Roberts,
- Abstract summary: This systematic review considered published literature between January 2015 and February 2023 describing AI-based diagnosis of CAD using IV OCT.
Our search identified 5,576 studies, with 513 included after initial screening and 35 studies included in the final systematic review after quality screening.
Our findings indicate that most of the identified models are not currently suitable for clinical use, primarily due to methodological flaws and underlying biases.
- Score: 13.864523412956379
- License:
- Abstract: Artificial intelligence (AI) methodologies hold great promise for the rapid and accurate diagnosis of coronary artery disease (CAD) from intravascular optical coherent tomography (IVOCT) images. Numerous papers have been published describing AI-based models for different diagnostic tasks, yet it remains unclear which models have potential clinical utility and have been properly validated. This systematic review considered published literature between January 2015 and February 2023 describing AI-based diagnosis of CAD using IVOCT. Our search identified 5,576 studies, with 513 included after initial screening and 35 studies included in the final systematic review after quality screening. Our findings indicate that most of the identified models are not currently suitable for clinical use, primarily due to methodological flaws and underlying biases. To address these issues, we provide recommendations to improve model quality and research practices to enhance the development of clinically useful AI products.
Related papers
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - AI in radiological imaging of soft-tissue and bone tumours: a systematic review evaluating against CLAIM and FUTURE-AI guidelines [1.5332408886895255]
Soft-tissue and bone tumours (STBT) are rare, diagnostically challenging lesions with variable clinical behaviours and treatment approaches.
This systematic review provides an overview of Artificial Intelligence (AI) methods using radiological imaging for diagnosis and prognosis of these tumours.
arXiv Detail & Related papers (2024-08-22T15:31:48Z) - Methodology and Real-World Applications of Dynamic Uncertain Causality Graph for Clinical Diagnosis with Explainability and Invariance [41.373856519548404]
Dynamic Uncertain Causality Graph (DUCG) approach is causality-driven, explainable, and invariant across different application scenarios.
46 DUCG models covering 54 chief complaints were constructed.
Over one million real diagnosis cases have been performed, with only 17 incorrect diagnoses identified.
arXiv Detail & Related papers (2024-06-09T11:37:45Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Artificial intelligence in digital pathology: a diagnostic test accuracy
systematic review and meta-analysis [0.3957768262206625]
This systematic review and meta-analysis included diagnostic accuracy studies using any type of artificial intelligence applied to whole slide images (WSIs) in any disease type.
100 studies were identified for inclusion, equating to over 152,000 whole slide images (WSIs) and representing many disease types.
These studies reported a mean sensitivity of 96.3% (CI 94.1-97.7) and mean specificity of 93.3% (CI 90.5-95.4) for AI.
Overall, AI offers good accuracy when applied to WSIs but requires more rigorous evaluation of its performance.
arXiv Detail & Related papers (2023-06-13T00:45:54Z) - Trustworthy Visual Analytics in Clinical Gait Analysis: A Case Study for
Patients with Cerebral Palsy [43.55994393060723]
gaitXplorer is a visual analytics approach for the classification of CP-related gait patterns.
It integrates Grad-CAM, a well-established explainable artificial intelligence algorithm, for explanations of machine learning classifications.
arXiv Detail & Related papers (2022-08-10T09:21:28Z) - Evaluating Explainable AI on a Multi-Modal Medical Imaging Task: Can
Existing Algorithms Fulfill Clinical Requirements? [42.75635888823057]
Heatmap is a form of explanation that highlights important features for AI models' prediction.
It is unknown how well heatmaps perform on explaining decisions on multi-modal medical images.
We propose the modality-specific feature importance (MSFI) metric to tackle this clinically important but technically ignored problem.
arXiv Detail & Related papers (2022-03-12T17:18:16Z) - Artificial Intelligence in Dry Eye Disease [4.444624718360766]
Dry eye disease (DED) has a prevalence of between 5 and 50%.
Recent success in its applications to medicine is mainly due to advancements in the sub-field of machine learning.
This is the first literature review on the use of AI in DED.
arXiv Detail & Related papers (2021-09-02T10:17:50Z) - What is the State of the Art of Computer Vision-Assisted Cytology? A
Systematic Literature Review [47.42354724922676]
We conducted a Systematic Literature Review to identify the state-of-art of computer vision techniques currently applied to cytology.
The most used methods in the analyzed works are deep learning-based (70 papers), while fewer works employ classic computer vision only (101 papers)
We conclude that there still is a lack of high-quality datasets for many types of stains and most of the works are not mature enough to be applied in a daily clinical diagnostic routine.
arXiv Detail & Related papers (2021-05-24T13:50:45Z) - Common pitfalls and recommendations for using machine learning to detect
and prognosticate for COVID-19 using chest radiographs and CT scans [1.9133116891556288]
We search EMBASE via OVID, MEDLINE via PubMed, bioRxiv, medRxiv and arXiv for published papers and preprints uploaded from January 1, 2020 to October 3, 2020.
Our review finds that none of the models identified are of potential clinical use due to methodological flaws and/or underlying biases.
arXiv Detail & Related papers (2020-08-14T14:25:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.