BARNN: A Bayesian Autoregressive and Recurrent Neural Network
- URL: http://arxiv.org/abs/2501.18665v1
- Date: Thu, 30 Jan 2025 15:44:04 GMT
- Title: BARNN: A Bayesian Autoregressive and Recurrent Neural Network
- Authors: Dario Coscia, Max Welling, Nicola Demo, Gianluigi Rozza,
- Abstract summary: We present BARNN: a variational Bayesian Autoregressive and Recurrent Neural Network.
BARNNs aim to provide a principled way to turn any autoregressive or recurrent model into its Bayesian version.
We also introduce a temporal version of the "Variational Mixtures of Posteriors" prior (tVAMP-prior) to make Bayesian inference efficient and well-calibrated.
- Score: 40.64742332352373
- License:
- Abstract: Autoregressive and recurrent networks have achieved remarkable progress across various fields, from weather forecasting to molecular generation and Large Language Models. Despite their strong predictive capabilities, these models lack a rigorous framework for addressing uncertainty, which is key in scientific applications such as PDE solving, molecular generation and Machine Learning Force Fields. To address this shortcoming we present BARNN: a variational Bayesian Autoregressive and Recurrent Neural Network. BARNNs aim to provide a principled way to turn any autoregressive or recurrent model into its Bayesian version. BARNN is based on the variational dropout method, allowing to apply it to large recurrent neural networks as well. We also introduce a temporal version of the "Variational Mixtures of Posteriors" prior (tVAMP-prior) to make Bayesian inference efficient and well-calibrated. Extensive experiments on PDE modelling and molecular generation demonstrate that BARNN not only achieves comparable or superior accuracy compared to existing methods, but also excels in uncertainty quantification and modelling long-range dependencies.
Related papers
- Bayesian Entropy Neural Networks for Physics-Aware Prediction [14.705526856205454]
We introduce BENN, a framework designed to impose constraints on Bayesian Neural Network (BNN) predictions.
Benn is capable of constraining not only the predicted values but also their derivatives and variances, ensuring a more robust and reliable model output.
Results highlight significant improvements over traditional BNNs and showcase competitive performance relative to contemporary constrained deep learning methods.
arXiv Detail & Related papers (2024-07-01T07:00:44Z) - Neural Residual Diffusion Models for Deep Scalable Vision Generation [17.931568104324985]
We propose a unified and massively scalable Neural Residual Diffusion Models framework (Neural-RDM)
The proposed neural residual models obtain state-of-the-art scores on image's and video's generative benchmarks.
arXiv Detail & Related papers (2024-06-19T04:57:18Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
Human trajectory forecasting helps to understand and predict human behaviors, enabling applications from social robots to self-driving cars.
Model-free methods offer superior prediction accuracy but lack explainability, while model-based methods provide explainability but cannot predict well.
We show that BNSP-SFM achieves up to a 50% improvement in prediction accuracy, compared with 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-07-04T16:45:21Z) - Improving Adversarial Robustness of DEQs with Explicit Regulations Along
the Neural Dynamics [26.94367957377311]
Deep equilibrium (DEQ) models replace the multiple-layer stacking of conventional deep networks with a fixed-point iteration of a single-layer transformation.
Existing works improve the robustness of general DEQ models with the widely-used adversarial training (AT) framework, but they fail to exploit the structural uniquenesses of DEQ models.
We propose reducing prediction entropy by progressively updating inputs along the neural dynamics.
Our methods substantially increase the robustness of DEQ models and even outperform the strong deep network baselines.
arXiv Detail & Related papers (2023-06-02T10:49:35Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - Stabilizing Equilibrium Models by Jacobian Regularization [151.78151873928027]
Deep equilibrium networks (DEQs) are a new class of models that eschews traditional depth in favor of finding the fixed point of a single nonlinear layer.
We propose a regularization scheme for DEQ models that explicitly regularizes the Jacobian of the fixed-point update equations to stabilize the learning of equilibrium models.
We show that this regularization adds only minimal computational cost, significantly stabilizes the fixed-point convergence in both forward and backward passes, and scales well to high-dimensional, realistic domains.
arXiv Detail & Related papers (2021-06-28T00:14:11Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Stochastic Recurrent Neural Network for Multistep Time Series
Forecasting [0.0]
We leverage advances in deep generative models and the concept of state space models to propose an adaptation of the recurrent neural network for time series forecasting.
Our model preserves the architectural workings of a recurrent neural network for which all relevant information is encapsulated in its hidden states, and this flexibility allows our model to be easily integrated into any deep architecture for sequential modelling.
arXiv Detail & Related papers (2021-04-26T01:43:43Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.