Regularized second-order optimization of tensor-network Born machines
- URL: http://arxiv.org/abs/2501.18691v1
- Date: Thu, 30 Jan 2025 19:00:04 GMT
- Title: Regularized second-order optimization of tensor-network Born machines
- Authors: Matan Ben-Dov, Jing Chen,
- Abstract summary: Born machines (TNBMs) are quantum-inspired generative models for learning data distributions.
We present an improved second-order optimization technique for TNBM training, which significantly enhances convergence rates and the quality of the optimized model.
- Score: 2.8834278113855896
- License:
- Abstract: Tensor-network Born machines (TNBMs) are quantum-inspired generative models for learning data distributions. Using tensor-network contraction and optimization techniques, the model learns an efficient representation of the target distribution, capable of capturing complex correlations with a compact parameterization. Despite their promise, the optimization of TNBMs presents several challenges. A key bottleneck of TNBMs is the logarithmic nature of the loss function that is commonly used for this problem. The single-tensor logarithmic optimization problem cannot be solved analytically, necessitating an iterative approach that slows down convergence and increases the risk of getting trapped in one of many non-optimal local minima. In this paper, we present an improved second-order optimization technique for TNBM training, which significantly enhances convergence rates and the quality of the optimized model. Our method employs a modified Newton's method on the manifold of normalized states, incorporating regularization of the loss landscape to mitigate local minima issues. We demonstrate the effectiveness of our approach by training a one-dimensional matrix product state (MPS) on both discrete and continuous datasets, showcasing its advantages in terms of stability, efficiency, and generalization.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Efficient Second-Order Neural Network Optimization via Adaptive Trust Region Methods [0.0]
SecondOrderAdaptive (SOAA) is a novel optimization algorithm designed to overcome limitations of traditional second-order techniques.
We empirically demonstrate that SOAA achieves faster and more stable convergence compared to first-order approximations.
arXiv Detail & Related papers (2024-10-03T08:23:06Z) - Dynamically configured physics-informed neural network in topology
optimization applications [4.403140515138818]
The physics-informed neural network (PINN) can avoid generating enormous amounts of data when solving forward problems.
A dynamically configured PINN-based topology optimization (DCPINN-TO) method is proposed.
The accuracy of the displacement prediction and optimization results indicate that the DCPINN-TO method is effective and efficient.
arXiv Detail & Related papers (2023-12-12T05:35:30Z) - Soft Merging: A Flexible and Robust Soft Model Merging Approach for
Enhanced Neural Network Performance [6.599368083393398]
Gradient (SGD) is often limited to converging local optima to improve model performance.
em soft merging method minimizes the obtained local optima models in undesirable results.
Experiments underscore the effectiveness of the merged networks.
arXiv Detail & Related papers (2023-09-21T17:07:31Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
Constrained optimization problems abound in industry, from portfolio optimization to logistics.
One of the major roadblocks in solving these problems is the presence of non-trivial hard constraints which limit the valid search space.
In this work, we encode arbitrary integer-valued equality constraints of the form Ax=b, directly into U(1) symmetric networks (TNs) and leverage their applicability as quantum-inspired generative models.
arXiv Detail & Related papers (2022-11-16T18:59:54Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - On Accelerating Distributed Convex Optimizations [0.0]
This paper studies a distributed multi-agent convex optimization problem.
We show that the proposed algorithm converges linearly with an improved rate of convergence than the traditional and adaptive gradient-descent methods.
We demonstrate our algorithm's superior performance compared to prominent distributed algorithms for solving real logistic regression problems.
arXiv Detail & Related papers (2021-08-19T13:19:54Z) - Learning from Images: Proactive Caching with Parallel Convolutional
Neural Networks [94.85780721466816]
A novel framework for proactive caching is proposed in this paper.
It combines model-based optimization with data-driven techniques by transforming an optimization problem into a grayscale image.
Numerical results show that the proposed scheme can reduce 71.6% computation time with only 0.8% additional performance cost.
arXiv Detail & Related papers (2021-08-15T21:32:47Z) - BAMSProd: A Step towards Generalizing the Adaptive Optimization Methods
to Deep Binary Model [34.093978443640616]
Recent methods have significantly reduced the performance of Binary Neural Networks (BNNs)
guaranteeing the effective and efficient training of BNNs is an unsolved problem.
We propose a BAMSProd algorithm with a key observation that the convergence property of optimizing deep binary model is strongly related to the quantization errors.
arXiv Detail & Related papers (2020-09-29T06:12:32Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Controllable Orthogonalization in Training DNNs [96.1365404059924]
Orthogonality is widely used for training deep neural networks (DNNs) due to its ability to maintain all singular values of the Jacobian close to 1.
This paper proposes a computationally efficient and numerically stable orthogonalization method using Newton's iteration (ONI)
We show that our method improves the performance of image classification networks by effectively controlling the orthogonality to provide an optimal tradeoff between optimization benefits and representational capacity reduction.
We also show that ONI stabilizes the training of generative adversarial networks (GANs) by maintaining the Lipschitz continuity of a network, similar to spectral normalization (
arXiv Detail & Related papers (2020-04-02T10:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.