Building Bridges, Not Walls -- Advancing Interpretability by Unifying Feature, Data, and Model Component Attribution
- URL: http://arxiv.org/abs/2501.18887v2
- Date: Thu, 13 Feb 2025 22:59:22 GMT
- Title: Building Bridges, Not Walls -- Advancing Interpretability by Unifying Feature, Data, and Model Component Attribution
- Authors: Shichang Zhang, Tessa Han, Usha Bhalla, Himabindu Lakkaraju,
- Abstract summary: This paper argues that feature, data, and component attribution methods share fundamental similarities, and bridging them can benefit interpretability research.
We conduct a detailed analysis of successful methods of these three attribution aspects and present a unified view to demonstrate that these seemingly distinct methods employ similar approaches, differing primarily in their perspectives rather than core techniques.
- Score: 25.096987279649436
- License:
- Abstract: The increasing complexity of AI systems has made understanding their behavior a critical challenge. Numerous methods have been developed to attribute model behavior to three key aspects: input features, training data, and internal model components. However, these attribution methods are studied and applied rather independently, resulting in a fragmented landscape of approaches and terminology. This position paper argues that feature, data, and component attribution methods share fundamental similarities, and bridging them can benefit interpretability research. We conduct a detailed analysis of successful methods of these three attribution aspects and present a unified view to demonstrate that these seemingly distinct methods employ similar approaches, such as perturbations, gradients, and linear approximations, differing primarily in their perspectives rather than core techniques. Our unified perspective enhances understanding of existing attribution methods, identifies shared concepts and challenges, makes this field more accessible to newcomers, and highlights new directions not only for attribution and interpretability but also for broader AI research, including model editing, steering, and regulation.
Related papers
- A review on data-driven constitutive laws for solids [0.0]
This review article highlights state-of-the-art data-driven techniques to discover, encode, surrogate, or emulate laws.
Our objective is to provide an organized taxonomy to a large spectrum of methodologies developed in the past decades.
arXiv Detail & Related papers (2024-05-06T17:33:58Z) - Toward Understanding the Disagreement Problem in Neural Network Feature Attribution [0.8057006406834466]
neural networks have demonstrated their remarkable ability to discern intricate patterns and relationships from raw data.
Understanding the inner workings of these black box models remains challenging, yet crucial for high-stake decisions.
Our work addresses this confusion by investigating the explanations' fundamental and distributional behavior.
arXiv Detail & Related papers (2024-04-17T12:45:59Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
Post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions.
We propose three novel evaluation schemes to more reliably measure the faithfulness of those methods.
We use these evaluation schemes to study strengths and shortcomings of some widely used attribution methods over a wide range of models.
arXiv Detail & Related papers (2023-03-21T14:24:58Z) - On the Evaluation of the Plausibility and Faithfulness of Sentiment
Analysis Explanations [2.071923272918415]
We propose different metrics and techniques to evaluate the explainability of SA models from two angles.
First, we evaluate the strength of the extracted "rationales" in faithfully explaining the predicted outcome.
Second, we measure the agreement between ExAI methods and human judgment on a homegrown dataset.
arXiv Detail & Related papers (2022-10-13T11:29:17Z) - Visualizing and Understanding Contrastive Learning [22.553990823550784]
We design visual explanation methods that contribute towards understanding similarity learning tasks from pairs of images.
We also adapt existing metrics, used to evaluate visual explanations of image classification systems, to suit pairs of explanations.
arXiv Detail & Related papers (2022-06-20T13:01:46Z) - Towards Better Understanding Attribution Methods [77.1487219861185]
Post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions.
We propose three novel evaluation schemes to more reliably measure the faithfulness of those methods.
We also propose a post-processing smoothing step that significantly improves the performance of some attribution methods.
arXiv Detail & Related papers (2022-05-20T20:50:17Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z) - There and Back Again: Revisiting Backpropagation Saliency Methods [87.40330595283969]
Saliency methods seek to explain the predictions of a model by producing an importance map across each input sample.
A popular class of such methods is based on backpropagating a signal and analyzing the resulting gradient.
We propose a single framework under which several such methods can be unified.
arXiv Detail & Related papers (2020-04-06T17:58:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.