Magnetizing weak links by time-dependent spin-orbit interactions: momentum conserving and non-conserving processes
- URL: http://arxiv.org/abs/2501.18961v1
- Date: Fri, 31 Jan 2025 08:46:18 GMT
- Title: Magnetizing weak links by time-dependent spin-orbit interactions: momentum conserving and non-conserving processes
- Authors: Debashree Chowdhury, O. Entin-Wohlman, A. Aharony, R. I. Shekhter, M. Jonson,
- Abstract summary: We study the Rashba spin-orbit interaction that affects the spins of electrons tunneling through the weak links.
We establish the connection between the magnetization flux induced by processes that conserve the momentum and the magnetization created by tunneling events that do not.
- Score: 0.0
- License:
- Abstract: Rashba spin-orbit interactions generated by time-dependent electric fields acting on weak links (that couple together non-magnetic macroscopic leads) can magnetize the junction. The Rashba spin-orbit interaction that affects the spins of electrons tunneling through the weak links changes their momentum concomitantly. We establish the connection between the magnetization flux induced by processes that conserve the momentum and the magnetization created by tunneling events that do not. Control of the induced magnetization can be achieved by tuning the polarization of the AC electric field responsible for the spin-orbit Rashba interaction (e.g., from being circular to linear), by changing the applied bias voltage, and by varying the degree of a gate voltage-induced asymmetry of the device.
Related papers
- Spin torque driven electron paramagnetic resonance of a single spin in a pentacene molecule [0.0]
We demonstrate coherent driving of a single spin by a radiofrequency spin-polarized current.
With the excitation of electron paramagnetic resonance, we established dynamic control of single spins by spin torque.
arXiv Detail & Related papers (2024-06-25T13:03:43Z) - Unconventional magnetism mediated by spin-phonon-photon coupling [0.0]
We predict a biquadratic long-range interaction between spins mediated by their coupling to phonons hybridized with vacuum photons into polaritons.
The resulting ordered state is reminiscent of superconductivity mediated by the exchange of virtual phonons.
arXiv Detail & Related papers (2024-05-15T10:58:03Z) - Longitudinal coupling between electrically driven spin-qubits and a resonator [0.0]
We study spin qubits confined in quantum dots at zero magnetic fields that are driven periodically by electrical fields and are coupled to a microwave resonator.
We find both transverse and longitudinal couplings between the Floquet spin qubit and the resonator, which can be selectively activated by modifying the driving frequency.
arXiv Detail & Related papers (2023-01-24T17:42:41Z) - Electric field tuning of magnetic states in single magnetic molecules [21.048521617491502]
We propose a new mechanism to realize enhanced spin-electric coupling and flip the spin states by tuning the spin superexchange between local spins.
Applying electric field can tune a wide range of magnetic ground states, including ferromagnetic, ferrimagnetic, and antiferromagnetic configurations.
arXiv Detail & Related papers (2022-12-15T18:16:28Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Effects of the dynamical magnetization state on spin transfer [68.8204255655161]
We show that the complex interactions between the spin-polarized electrons and the dynamical states of the local spins can be decomposed into separate processes.
Our results suggest that exquisite control of spin transfer efficiency and of the resulting dynamical magnetization states may be achievable.
arXiv Detail & Related papers (2021-01-21T22:12:03Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Energy and momentum conservation in spin transfer [77.34726150561087]
We show that energy and linear momentum conservation laws impose strong constraints on the properties of magnetic excitations induced by spin transfer.
Our results suggest the possibility to achieve precise control of spin transfer-driven magnetization dynamics.
arXiv Detail & Related papers (2020-04-04T15:43:30Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.