Characterizing User Behavior: The Interplay Between Mobility Patterns and Mobile Traffic
- URL: http://arxiv.org/abs/2501.19348v1
- Date: Fri, 31 Jan 2025 17:52:03 GMT
- Title: Characterizing User Behavior: The Interplay Between Mobility Patterns and Mobile Traffic
- Authors: Anne Josiane Kouam, Aline Carneiro Viana, Mariano G. Beiró, Leo Ferres, Luca Pappalardo,
- Abstract summary: This paper introduces a novel approach that explores the dependency between traffic and mobility behaviors at the user level.
Using a week-long XDR dataset from 1,337,719 users across several provinces in Chile, we validate our approach.
- Score: 1.292711646217355
- License:
- Abstract: Mobile devices have become essential for capturing human activity, and eXtended Data Records (XDRs) offer rich opportunities for detailed user behavior modeling, which is useful for designing personalized digital services. Previous studies have primarily focused on aggregated mobile traffic and mobility analyses, often neglecting individual-level insights. This paper introduces a novel approach that explores the dependency between traffic and mobility behaviors at the user level. By analyzing 13 individual features that encompass traffic patterns and various mobility aspects, we enhance the understanding of how these behaviors interact. Our advanced user modeling framework integrates traffic and mobility behaviors over time, allowing for fine-grained dependencies while maintaining population heterogeneity through user-specific signatures. Furthermore, we develop a Markov model that infers traffic behavior from mobility and vice versa, prioritizing significant dependencies while addressing privacy concerns. Using a week-long XDR dataset from 1,337,719 users across several provinces in Chile, we validate our approach, demonstrating its robustness and applicability in accurately inferring user behavior and matching mobility and traffic profiles across diverse urban contexts.
Related papers
- Deep Learning-driven Mobile Traffic Measurement Collection and Analysis [0.43512163406552007]
In this thesis, we harness the powerful hierarchical feature learning abilities of Deep Learning (DL) techniques in both spatial and temporal domains.
We develop solutions for precise city-scale mobile traffic analysis and forecasting.
arXiv Detail & Related papers (2024-10-14T06:53:45Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Holistic Graph-based Motion Prediction [2.365702128814616]
We present a novel approach for a graph-based motion prediction based on a heterogeneous holistic graph representation.
The information is encoded through different types of nodes and edges that both are enriched with arbitrary features.
arXiv Detail & Related papers (2023-01-31T10:46:46Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Clustering and Analysis of GPS Trajectory Data using Distance-based
Features [20.91019606657394]
We propose a new mobility metric, Daily Characteristic Distance, and use it to generate features for each user.
We then use those features with an unsupervised machine learning method, $k$-means clustering, and obtain three clusters of users for each type of day (Workday and Offday)
We propose two new metrics for the analysis of the clustering results, namely User Commonality and Average Frequency.
arXiv Detail & Related papers (2022-12-01T01:25:49Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
We present a trajectory prediction approach with respect to traffic lights, D2-TPred, using a spatial dynamic interaction graph (SDG) and a behavior dependency graph (BDG)
Our experimental results show that our model achieves more than 20.45% and 20.78% in terms of ADE and FDE, respectively, on VTP-TL.
arXiv Detail & Related papers (2022-07-21T10:19:07Z) - Learning Self-Modulating Attention in Continuous Time Space with
Applications to Sequential Recommendation [102.24108167002252]
We propose a novel attention network, named self-modulating attention, that models the complex and non-linearly evolving dynamic user preferences.
We empirically demonstrate the effectiveness of our method on top-N sequential recommendation tasks, and the results on three large-scale real-world datasets show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-30T03:54:11Z) - Graph-SIM: A Graph-based Spatiotemporal Interaction Modelling for
Pedestrian Action Prediction [10.580548257913843]
We propose a novel graph-based model for predicting pedestrian crossing action.
We introduce a new dataset that provides 3D bounding box and pedestrian behavioural annotations for the existing nuScenes dataset.
Our approach achieves state-of-the-art performance by improving on various metrics by more than 15% in comparison to existing methods.
arXiv Detail & Related papers (2020-12-03T18:28:27Z) - Studying Person-Specific Pointing and Gaze Behavior for Multimodal
Referencing of Outside Objects from a Moving Vehicle [58.720142291102135]
Hand pointing and eye gaze have been extensively investigated in automotive applications for object selection and referencing.
Existing outside-the-vehicle referencing methods focus on a static situation, whereas the situation in a moving vehicle is highly dynamic and subject to safety-critical constraints.
We investigate the specific characteristics of each modality and the interaction between them when used in the task of referencing outside objects.
arXiv Detail & Related papers (2020-09-23T14:56:19Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - Flow descriptors of human mobility networks [0.0]
We propose a systematic analysis to characterize mobility network flows and topology and assess their impact into individual traces.
This framework is suitable to assess urban planning, optimize transportation, measure the impact of external events and conditions, monitor internal dynamics and profile users according to their movement patterns.
arXiv Detail & Related papers (2020-03-16T15:27:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.