Supervised Quadratic Feature Analysis: An Information Geometry Approach to Dimensionality Reduction
- URL: http://arxiv.org/abs/2502.00168v2
- Date: Fri, 07 Feb 2025 17:31:46 GMT
- Title: Supervised Quadratic Feature Analysis: An Information Geometry Approach to Dimensionality Reduction
- Authors: Daniel Herrera-Esposito, Johannes Burge,
- Abstract summary: Supervised dimensionality reduction aims to map labeled data to a low-dimensional feature space while maximizing class discriminability.
We present Supervised Quadratic Feature Analysis (SQFA), a dimensionality reduction method for learning linear features.
- Score: 0.0
- License:
- Abstract: Supervised dimensionality reduction aims to map labeled data to a low-dimensional feature space while maximizing class discriminability. Despite the availability of methods for learning complex non-linear features (e.g. Deep Learning), there is an enduring demand for dimensionality reduction methods that learn linear features due to their interpretability, low computational cost, and broad applicability. However, there is a gap between methods that optimize linear separability (e.g. LDA), and more flexible but computationally expensive methods that optimize over arbitrary class boundaries (e.g. metric-learning methods). Here, we present Supervised Quadratic Feature Analysis (SQFA), a dimensionality reduction method for learning linear features that maximize the differences between class-conditional first- and second-order statistics, which allow for quadratic discrimination. SQFA exploits the information geometry of second-order statistics in the symmetric positive definite manifold. We show that SQFA features support quadratic discriminability in real-world problems. We also provide a theoretical link, based on information geometry, between SQFA and the Quadratic Discriminant Analysis (QDA) classifier.
Related papers
- Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification [72.77513633290056]
We present a novel approach that combines the eigenanalysis of a covariance matrix evaluated on a training set with a Hessian matrix evaluated on a deep learning model.
Our method captures intricate patterns and relationships, enhancing classification performance.
arXiv Detail & Related papers (2024-02-14T16:10:42Z) - Nonlinear Feature Aggregation: Two Algorithms driven by Theory [45.3190496371625]
Real-world machine learning applications are characterized by a huge number of features, leading to computational and memory issues.
We propose a dimensionality reduction algorithm (NonLinCFA) which aggregates non-linear transformations of features with a generic aggregation function.
We also test the algorithms on synthetic and real-world datasets, performing regression and classification tasks, showing competitive performances.
arXiv Detail & Related papers (2023-06-19T19:57:33Z) - Interpretable Linear Dimensionality Reduction based on Bias-Variance
Analysis [45.3190496371625]
We propose a principled dimensionality reduction approach that maintains the interpretability of the resulting features.
In this way, all features are considered, the dimensionality is reduced and the interpretability is preserved.
arXiv Detail & Related papers (2023-03-26T14:30:38Z) - Optimal Discriminant Analysis in High-Dimensional Latent Factor Models [1.4213973379473654]
In high-dimensional classification problems, a commonly used approach is to first project the high-dimensional features into a lower dimensional space.
We formulate a latent-variable model with a hidden low-dimensional structure to justify this two-step procedure.
We propose a computationally efficient classifier that takes certain principal components (PCs) of the observed features as projections.
arXiv Detail & Related papers (2022-10-23T21:45:53Z) - On Hypothesis Transfer Learning of Functional Linear Models [8.557392136621894]
We study the transfer learning (TL) for the functional linear regression (FLR) under the Reproducing Kernel Space (RKHS) framework.
We measure the similarity across tasks using RKHS distance, allowing the type of information being transferred tied to the properties of the imposed RKHS.
Two algorithms are proposed: one conducts the transfer when positive sources are known, while the other leverages aggregation to achieve robust transfer without prior information about the sources.
arXiv Detail & Related papers (2022-06-09T04:50:16Z) - Learning Linearized Assignment Flows for Image Labeling [70.540936204654]
We introduce a novel algorithm for estimating optimal parameters of linearized assignment flows for image labeling.
We show how to efficiently evaluate this formula using a Krylov subspace and a low-rank approximation.
arXiv Detail & Related papers (2021-08-02T13:38:09Z) - Sparse Universum Quadratic Surface Support Vector Machine Models for
Binary Classification [0.0]
We design kernel-free Universum quadratic surface support vector machine models.
We propose the L1 norm regularized version that is beneficial for detecting potential sparsity patterns in the Hessian of the quadratic surface.
We conduct numerical experiments on both artificial and public benchmark data sets to demonstrate the feasibility and effectiveness of the proposed models.
arXiv Detail & Related papers (2021-04-03T07:40:30Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - High-Dimensional Quadratic Discriminant Analysis under Spiked Covariance
Model [101.74172837046382]
We propose a novel quadratic classification technique, the parameters of which are chosen such that the fisher-discriminant ratio is maximized.
Numerical simulations show that the proposed classifier not only outperforms the classical R-QDA for both synthetic and real data but also requires lower computational complexity.
arXiv Detail & Related papers (2020-06-25T12:00:26Z) - Saliency-based Weighted Multi-label Linear Discriminant Analysis [101.12909759844946]
We propose a new variant of Linear Discriminant Analysis (LDA) to solve multi-label classification tasks.
The proposed method is based on a probabilistic model for defining the weights of individual samples.
The Saliency-based weighted Multi-label LDA approach is shown to lead to performance improvements in various multi-label classification problems.
arXiv Detail & Related papers (2020-04-08T19:40:53Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
We develop a convex analytic approach to analyze finite width two-layer ReLU networks.
We show that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set.
In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints.
arXiv Detail & Related papers (2020-02-25T23:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.