Contrastive Private Data Synthesis via Weighted Multi-PLM Fusion
- URL: http://arxiv.org/abs/2502.00245v1
- Date: Sat, 01 Feb 2025 00:54:25 GMT
- Title: Contrastive Private Data Synthesis via Weighted Multi-PLM Fusion
- Authors: Tianyuan Zou, Yang Liu, Peng Li, Yufei Xiong, Jianqing Zhang, Jingjing Liu, Xiaozhou Ye, Ye Ouyang, Ya-Qin Zhang,
- Abstract summary: Existing methods relying on pre-trained models for data synthesis often struggle in data-deficient scenarios.
We propose a novel contrAstive private data Synthesis via weighted multiple Pre-trained language models (PLM) framework, named as WASP.
- Score: 16.292666568019577
- License:
- Abstract: Substantial quantity and high quality are the golden rules of making a good training dataset with sample privacy protection equally important. Generating synthetic samples that resemble high-quality private data while ensuring Differential Privacy (DP), a formal privacy guarantee, promises scalability and practicality. However, existing methods relying on pre-trained models for data synthesis %that avoid fine-tuning large pre-trained generative models often struggle in data-deficient scenarios, suffering from limited sample size, inevitable generation noise and existing pre-trained model bias. To address these challenges, we propose a novel contrAstive private data Synthesis via Weighted multiple Pre-trained language models (PLM) framework, named as WASP. WASP utilizes limited private samples for more accurate private data distribution estimation via a Top-Q voting mechanism, and leverages low-quality synthetic samples for contrastive generation via collaboration among dynamically weighted multiple pre-trained models.Extensive experiments on 6 well-developed datasets with 6 open-source and 3 closed-source PLMs demonstrate the superiority of WASP in improving model performance over diverse downstream tasks. Code is available at https://anonymous.4open.science/r/WASP.
Related papers
- BARE: Combining Base and Instruction-Tuned Language Models for Better Synthetic Data Generation [71.46236155101032]
We propose Base-Refine, a synthetic data generation method that combines the diversity of base models with the quality of instruct-tuned models.
We show that fine-tuning with BARE-generated data achieves a 101% improvement over instruct-only data on GSM8K and a 18.4% improvement over SOTA methods on RAFT.
arXiv Detail & Related papers (2025-02-03T00:12:40Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - FuseGen: PLM Fusion for Data-generation based Zero-shot Learning [18.51772808242954]
FuseGen is a novel data generation-based zero-shot learning framework.
It introduces a new criteria for subset selection from synthetic datasets.
The chosen subset provides in-context feedback to each PLM, enhancing dataset quality.
arXiv Detail & Related papers (2024-06-18T11:55:05Z) - Efficient Differentially Private Fine-Tuning of Diffusion Models [15.71777343534365]
Fine-tuning large diffusion models with DP-SGD can be very resource-demanding in terms of memory usage and computation.
In this work, we investigate Efficient Fine-Tuning (PEFT) of diffusion models using Low-Dimensional Adaptation (LoDA) with Differential Privacy.
Our source code will be made available on GitHub.
arXiv Detail & Related papers (2024-06-07T21:00:20Z) - Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance [55.872926690722714]
We study the predictability of model performance regarding the mixture proportions in function forms.
We propose nested use of the scaling laws of training steps, model sizes, and our data mixing law.
Our method effectively optimize the training mixture of a 1B model trained for 100B tokens in RedPajama.
arXiv Detail & Related papers (2024-03-25T17:14:00Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Uncertainty-aware Parameter-Efficient Self-training for Semi-supervised
Language Understanding [38.11411155621616]
We study self-training as one of the predominant semi-supervised learning approaches.
We present UPET, a novel Uncertainty-aware self-Training framework.
We show that UPET achieves a substantial improvement in terms of performance and efficiency.
arXiv Detail & Related papers (2023-10-19T02:18:29Z) - Private Synthetic Data Meets Ensemble Learning [15.425653946755025]
When machine learning models are trained on synthetic data and then deployed on real data, there is often a performance drop.
We introduce a new ensemble strategy for training downstream models, with the goal of enhancing their performance when used on real data.
arXiv Detail & Related papers (2023-10-15T04:24:42Z) - Harnessing large-language models to generate private synthetic text [18.863579044812703]
Differentially private training algorithms like DP-SGD protect sensitive training data by ensuring that trained models do not reveal private information.
This paper studies an alternative approach to generate synthetic data that is differentially private with respect to the original data, and then non-privately training a model on the synthetic data.
generating private synthetic data is much harder than training a private model.
arXiv Detail & Related papers (2023-06-02T16:59:36Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.