Exploration and Practice of Improving Programming Ability for the Undergraduates Majoring in Computer Science
- URL: http://arxiv.org/abs/2502.00483v1
- Date: Sat, 01 Feb 2025 16:17:38 GMT
- Title: Exploration and Practice of Improving Programming Ability for the Undergraduates Majoring in Computer Science
- Authors: Guowu Yuan, Shicai Liu,
- Abstract summary: The necessity and importance of improving the ability of programming is analyzed in this paper.
The exploration and practice of improving students' ability of programming are discussed.
- Score: 0.15346678870160887
- License:
- Abstract: Programming ability is one of the most important abilities for the undergraduates majoring in computer science. Taking Yunnan University as an example, the necessity and importance of improving the ability of programming is analyzed in this paper. The exploration and practice of improving students' ability of programming are discussed from four aspects: arrangement and reform of programming curriculums, construction of online programming practice innovation platform, certification of programming ability and organization of programming competitions. These reforms have achieved good results in recent years, which can provide reference for the practical teaching reform of computer specialty in relevant universities.
Related papers
- The Humanist Programming Novice as Novice [0.0]
I ask whether specialized courses promote the production of fragile programming knowledge, what are the difficulties encountered by humanistic students in their learning of programming, and what may be the proper place of algorithmics in the curriculum of specialized studies.
arXiv Detail & Related papers (2025-01-09T17:12:58Z) - First Steps towards K-12 Computer Science Education in Portugal -- Experience Report [49.1574468325115]
This paper reports on the efforts of the ENSICO association to implement such aims in Portugal.
Starting with pilot projects in a few schools in 2020, it is currently working with 4500 students, 35 schools and 100 school teachers.
The main aim is to gain enough experience and knowledge to eventually define a comprehensive syllabus for teaching computing as a mandatory subject.
arXiv Detail & Related papers (2024-11-15T12:32:52Z) - CSEPrompts: A Benchmark of Introductory Computer Science Prompts [11.665831944836118]
Recent advances in AI, machine learning, and NLP have led to the development of a new generation of Large Language Models (LLMs)
Commercial applications have made this technology available to the general public, thus making it possible to use LLMs to produce high-quality texts for academic and professional purposes.
Schools and universities are aware of the increasing use of AI-generated content by students and they have been researching the impact of this new technology and its potential misuse.
arXiv Detail & Related papers (2024-04-03T07:55:57Z) - Leveraging Large Language Model and Story-Based Gamification in
Intelligent Tutoring System to Scaffold Introductory Programming Courses: A
Design-Based Research Study [6.773393436953262]
This study explores how large language models and.
gamblers can scaffold coding learning and increase.
Chinese students sense of belonging in introductory programming courses.
arXiv Detail & Related papers (2023-02-25T04:07:03Z) - Hierarchical Programmatic Reinforcement Learning via Learning to Compose
Programs [58.94569213396991]
We propose a hierarchical programmatic reinforcement learning framework to produce program policies.
By learning to compose programs, our proposed framework can produce program policies that describe out-of-distributionally complex behaviors.
The experimental results in the Karel domain show that our proposed framework outperforms baselines.
arXiv Detail & Related papers (2023-01-30T14:50:46Z) - Training the next generation of computational scientists through a new
undergraduate course [0.0]
The course aims to prepare students as the next generation of research-oriented computational scientists and engineers.
The training includes how to think about, formulate, organize, and implement programs in scientific computing.
arXiv Detail & Related papers (2022-03-17T19:42:52Z) - Competition-Level Code Generation with AlphaCode [74.87216298566942]
We introduce AlphaCode, a system for code generation that can create novel solutions to problems that require deeper reasoning.
In simulated evaluations on recent programming competitions on the Codeforces platform, AlphaCode achieved on average a ranking of top 54.3%.
arXiv Detail & Related papers (2022-02-08T23:16:31Z) - ProTo: Program-Guided Transformer for Program-Guided Tasks [59.34258016795216]
We formulate program-guided tasks which require learning to execute a given program on the observed task specification.
We propose the Program-guided Transformer (ProTo), which integrates both semantic and structural guidance of a program.
ProTo executes a program in a learned latent space and enjoys stronger representation ability than previous neural-symbolic approaches.
arXiv Detail & Related papers (2021-10-02T13:46:32Z) - Enhancement Programming Skills and Transforming Knowledge of Programming
through Neuroeducation Approaches [0.0]
programming digital devices and developing software is an important professional qualification, which contributes to employment opportunities.
Recent development of brain imaging techniques have provided additional opportunity for neuroscientists to explore the functional organization of the human brain.
This research is an approach to supporting learning in the field of learning and teaching computer programming.
arXiv Detail & Related papers (2021-05-19T06:26:30Z) - Interleaving Computational and Inferential Thinking: Data Science for
Undergraduates at Berkeley [81.01051375191828]
The undergraduate data science curriculum at the University of California, Berkeley is anchored in five new courses.
These courses emphasize computational thinking, inferential thinking, and working on real-world problems.
These courses have become some of the most popular on campus and have led to a surging interest in a new undergraduate major and minor program in data science.
arXiv Detail & Related papers (2021-02-13T22:51:24Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.