Generating crossmodal gene expression from cancer histopathology improves multimodal AI predictions
- URL: http://arxiv.org/abs/2502.00568v3
- Date: Tue, 11 Feb 2025 12:25:42 GMT
- Title: Generating crossmodal gene expression from cancer histopathology improves multimodal AI predictions
- Authors: Samiran Dey, Christopher R. S. Banerji, Partha Basuchowdhuri, Sanjoy K. Saha, Deepak Parashar, Tapabrata Chakraborti,
- Abstract summary: We show that genomic expressions synthesized from digital histopathology jointly predict cancer grading and patient survival risk with high accuracy.
PathGen code is available for open use by the research community through GitHub at https://github.com/Samiran-Dey/PathGen.
- Score: 1.0225653612678713
- License:
- Abstract: Emerging research has highlighted that artificial intelligence based multimodal fusion of digital pathology and transcriptomic features can improve cancer diagnosis (grading/subtyping) and prognosis (survival risk) prediction. However, such direct fusion for joint decision is impractical in real clinical settings, where histopathology is still the gold standard for diagnosis and transcriptomic tests are rarely requested, at least in the public healthcare system. With our novel diffusion based crossmodal generative AI model PathGen, we show that genomic expressions synthesized from digital histopathology jointly predicts cancer grading and patient survival risk with high accuracy (state-of-the-art performance), certainty (through conformal coverage guarantee) and interpretability (through distributed attention maps). PathGen code is available for open use by the research community through GitHub at https://github.com/Samiran-Dey/PathGen.
Related papers
- Survey and Improvement Strategies for Gene Prioritization with Large Language Models [61.24568051916653]
Large language models (LLMs) have performed well in medical exams, but their effectiveness in diagnosing rare genetic diseases has not been assessed.
We used multi-agent and Human Phenotype Ontology (HPO) classification to categorized patients based on phenotypes and solvability levels.
At baseline, GPT-4 outperformed other LLMs, achieving near 30% accuracy in ranking causal genes correctly.
arXiv Detail & Related papers (2025-01-30T23:03:03Z) - PathoGen-X: A Cross-Modal Genomic Feature Trans-Align Network for Enhanced Survival Prediction from Histopathology Images [3.2864520297081934]
We present the cross-modal genomic feature translation and alignment network for enhanced survival prediction from histopathology images.
PathoGen-X employs transformer-based networks to align and translate image features into the genomic feature space.
PathoGen-X demonstrates strong survival prediction performance, emphasizing the potential of enriched imaging models for accessible cancer prognosis.
arXiv Detail & Related papers (2024-11-01T17:18:09Z) - Variational and Explanatory Neural Networks for Encoding Cancer Profiles and Predicting Drug Responses [40.80133767939435]
Existing AI models face challenges due to noise in transcriptomics data and lack of biological interpretability.
We introduce VETE, a novel neural network framework that incorporates a variational component to mitigate noise effects.
VETE bridges the gap between AI-driven predictions and biologically meaningful insights in cancer research.
arXiv Detail & Related papers (2024-07-05T13:13:02Z) - MMFusion: Multi-modality Diffusion Model for Lymph Node Metastasis Diagnosis in Esophageal Cancer [13.74067035373274]
We introduce a multi-modal heterogeneous graph-based conditional feature-guided diffusion model for lymph node metastasis diagnosis based on CT images.
We propose a masked relational representation learning strategy, aiming to uncover the latent prognostic correlations and priorities of primary tumor and lymph node image representations.
arXiv Detail & Related papers (2024-05-15T17:52:00Z) - Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis [7.996257103473235]
We propose Pathology-Genome Heterogeneous Graph (PGHG) that integrates whole slide images (WSI) and bulk RNA-Seq expression data with heterogeneous graph neural network for cancer survival analysis.
The PGHG consists of biological knowledge-guided representation learning network and pathology-genome heterogeneous graph.
We evaluate the model on low-grade gliomas, glioblastoma, and kidney renal papillary cell carcinoma datasets from the Cancer Genome Atlas.
arXiv Detail & Related papers (2024-04-11T09:07:40Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
In Canada, prostate cancer is the most common form of cancer in men and accounted for 20% of new cancer cases for this demographic in 2022.
There has been significant interest in the development of deep neural networks for prostate cancer diagnosis, prognosis, and treatment planning using diffusion weighted imaging (DWI) data.
In this study, we explore the efficacy of latent diffusion for generating realistic prostate DWI data through the introduction of an anatomic-conditional controlled latent diffusion strategy.
arXiv Detail & Related papers (2023-11-30T15:11:03Z) - MGCT: Mutual-Guided Cross-Modality Transformer for Survival Outcome
Prediction using Integrative Histopathology-Genomic Features [2.3942863352287787]
Mutual-Guided Cross-Modality Transformer (MGCT) is a weakly-supervised, attention-based multimodal learning framework.
We propose MGCT to combine histology features and genomic features to model the genotype-phenotype interactions within the tumor microenvironment.
arXiv Detail & Related papers (2023-11-20T10:49:32Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.