Safety Alignment Depth in Large Language Models: A Markov Chain Perspective
- URL: http://arxiv.org/abs/2502.00669v1
- Date: Sun, 02 Feb 2025 04:43:35 GMT
- Title: Safety Alignment Depth in Large Language Models: A Markov Chain Perspective
- Authors: Ching-Chia Kao, Chia-Mu Yu, Chun-Shien Lu, Chu-Song Chen,
- Abstract summary: Large Language Models (LLMs) are increasingly adopted in high-stakes scenarios, yet their safety mechanisms often remain fragile.
This paper offers the first theoretical result on how to identify the ideal depth for safety alignment.
We reveal a fundamental interaction between alignment depth and ensemble width-indicating that broader ensembles can compensate for shallower alignments.
- Score: 23.347349690954452
- License:
- Abstract: Large Language Models (LLMs) are increasingly adopted in high-stakes scenarios, yet their safety mechanisms often remain fragile. Simple jailbreak prompts or even benign fine-tuning can bypass these protocols, underscoring the need to understand where and how they fail. Recent findings suggest that vulnerabilities emerge when alignment is confined to only the initial output tokens. Unfortunately, even with the introduction of deep safety alignment, determining the optimal safety depth remains an unresolved challenge. By leveraging the equivalence between autoregressive language models and Markov chains, this paper offers the first theoretical result on how to identify the ideal depth for safety alignment, and demonstrates how permutation-based data augmentation can tighten these bounds. Crucially, we reveal a fundamental interaction between alignment depth and ensemble width-indicating that broader ensembles can compensate for shallower alignments. These insights provide a theoretical foundation for designing more robust, scalable safety strategies that complement existing alignment approaches, opening new avenues for research into safer, more reliable LLMs.
Related papers
- Almost Surely Safe Alignment of Large Language Models at Inference-Time [20.5164976103514]
Even highly capable large language models (LLMs) can produce biased or unsafe responses.
This paper introduces a novel inference-time alignment approach.
We achieve this by framing the safe generation of inference-time responses as a constrained Markov decision process.
arXiv Detail & Related papers (2025-02-03T09:59:32Z) - Deliberative Alignment: Reasoning Enables Safer Language Models [64.60765108418062]
We introduce Deliberative Alignment, a new paradigm that teaches the model safety specifications and trains it to explicitly recall and accurately reason over the specifications before answering.
We used this approach to align OpenAI's o-series models, and achieved highly precise adherence to OpenAI's safety policies, without requiring human-written chain-of-thoughts or answers.
arXiv Detail & Related papers (2024-12-20T21:00:11Z) - Superficial Safety Alignment Hypothesis [8.297367440457508]
We propose the Superficial Safety Alignment Hypothesis (SSAH), which posits that safety alignment should teach an otherwise unsafe model to choose the correct reasoning direction.
We identify four types of attribute-critical components in safety-aligned large language models (LLMs)
Our findings show that freezing certain safety-critical components 7.5% during fine-tuning allows the model to retain its safety attributes while adapting to new tasks.
arXiv Detail & Related papers (2024-10-07T19:53:35Z) - Safe Inputs but Unsafe Output: Benchmarking Cross-modality Safety Alignment of Large Vision-Language Model [73.8765529028288]
We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment.
To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations.
Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
arXiv Detail & Related papers (2024-06-21T16:14:15Z) - Safety Alignment Should Be Made More Than Just a Few Tokens Deep [48.823599143711235]
The safety alignment of current Large Language Models (LLMs) is vulnerable.
Relatively simple attacks, or even benign fine-tuning, can jailbreak aligned models.
We show that deepening the safety alignment beyond just the first few tokens can often meaningfully improve robustness against some common exploits.
arXiv Detail & Related papers (2024-06-10T00:35:23Z) - Towards Comprehensive Post Safety Alignment of Large Language Models via Safety Patching [74.62818936088065]
textscSafePatching is a novel framework for comprehensive PSA.
textscSafePatching achieves a more comprehensive PSA than baseline methods.
textscSafePatching demonstrates its superiority in continual PSA scenarios.
arXiv Detail & Related papers (2024-05-22T16:51:07Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
This paper introduces CodeAttack, a framework that transforms natural language inputs into code inputs.
Our studies reveal a new and universal safety vulnerability of these models against code input.
We find that a larger distribution gap between CodeAttack and natural language leads to weaker safety generalization.
arXiv Detail & Related papers (2024-03-12T17:55:38Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.