Compositional Concept-Based Neuron-Level Interpretability for Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2502.00684v1
- Date: Sun, 02 Feb 2025 06:05:49 GMT
- Title: Compositional Concept-Based Neuron-Level Interpretability for Deep Reinforcement Learning
- Authors: Zeyu Jiang, Hai Huang, Xingquan Zuo,
- Abstract summary: Deep reinforcement learning (DRL) has successfully addressed many complex control problems.
Current DRL interpretability methods largely treat neural networks as black boxes.
We propose a novel concept-based interpretability method that provides fine-grained explanations of DRL models at the neuron level.
- Score: 2.9539724161670167
- License:
- Abstract: Deep reinforcement learning (DRL), through learning policies or values represented by neural networks, has successfully addressed many complex control problems. However, the neural networks introduced by DRL lack interpretability and transparency. Current DRL interpretability methods largely treat neural networks as black boxes, with few approaches delving into the internal mechanisms of policy/value networks. This limitation undermines trust in both the neural network models that represent policies and the explanations derived from them. In this work, we propose a novel concept-based interpretability method that provides fine-grained explanations of DRL models at the neuron level. Our method formalizes atomic concepts as binary functions over the state space and constructs complex concepts through logical operations. By analyzing the correspondence between neuron activations and concept functions, we establish interpretable explanations for individual neurons in policy/value networks. Experimental results on both continuous control tasks and discrete decision-making environments demonstrate that our method can effectively identify meaningful concepts that align with human understanding while faithfully reflecting the network's decision-making logic.
Related papers
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
We propose leveraging the principle of chunking to interpret artificial neural population activities.
We first demonstrate this concept in recurrent neural networks (RNNs) trained on artificial sequences with imposed regularities.
We identify similar recurring embedding states corresponding to concepts in the input, with perturbations to these states activating or inhibiting the associated concepts.
arXiv Detail & Related papers (2025-02-03T20:30:46Z) - Neural DNF-MT: A Neuro-symbolic Approach for Learning Interpretable and Editable Policies [51.03989561425833]
We propose a neuro-symbolic approach called neural DNF-MT for end-to-end policy learning.
The differentiable nature of the neural DNF-MT model enables the use of deep actor-critic algorithms for training.
We show how the bivalent representations of deterministic policies can be edited and incorporated back into a neural model.
arXiv Detail & Related papers (2025-01-07T15:51:49Z) - ConceptLens: from Pixels to Understanding [1.3466710708566176]
ConceptLens is an innovative tool designed to illuminate the intricate workings of deep neural networks (DNNs) by visualizing hidden neuron activations.
By integrating deep learning with symbolic methods, ConceptLens offers users a unique way to understand what triggers neuron activations.
arXiv Detail & Related papers (2024-10-04T20:49:12Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Understanding polysemanticity in neural networks through coding theory [0.8702432681310401]
We propose a novel practical approach to network interpretability and theoretical insights into polysemanticity and the density of codes.
We show how random projections can reveal whether a network exhibits a smooth or non-differentiable code and hence how interpretable the code is.
Our approach advances the pursuit of interpretability in neural networks, providing insights into their underlying structure and suggesting new avenues for circuit-level interpretability.
arXiv Detail & Related papers (2024-01-31T16:31:54Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Understanding Distributed Representations of Concepts in Deep Neural
Networks without Supervision [25.449397570387802]
We propose an unsupervised method for discovering distributed representations of concepts by selecting a principal subset of neurons.
Our empirical findings demonstrate that instances with similar neuron activation states tend to share coherent concepts.
It can be utilized to identify unlabeled subclasses within data and to detect the causes of misclassifications.
arXiv Detail & Related papers (2023-12-28T07:33:51Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z) - Training spiking neural networks using reinforcement learning [0.0]
We propose biologically-plausible alternatives to backpropagation to facilitate the training of spiking neural networks.
We focus on investigating the candidacy of reinforcement learning rules in solving the spatial and temporal credit assignment problems.
We compare and contrast the two approaches by applying them to traditional RL domains such as gridworld, cartpole and mountain car.
arXiv Detail & Related papers (2020-05-12T17:40:36Z) - A neural network model of perception and reasoning [0.0]
We show that a simple set of biologically consistent organizing principles confer these capabilities to neuronal networks.
We implement these principles in a novel machine learning algorithm, based on concept construction instead of optimization, to design deep neural networks that reason with explainable neuron activity.
arXiv Detail & Related papers (2020-02-26T06:26:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.