TMI-CLNet: Triple-Modal Interaction Network for Chronic Liver Disease Prognosis From Imaging, Clinical, and Radiomic Data Fusion
- URL: http://arxiv.org/abs/2502.00695v1
- Date: Sun, 02 Feb 2025 07:05:28 GMT
- Title: TMI-CLNet: Triple-Modal Interaction Network for Chronic Liver Disease Prognosis From Imaging, Clinical, and Radiomic Data Fusion
- Authors: Linglong Wu, Xuhao Shan, Ruiquan Ge, Ruoyu Liang, Chi Zhang, Yonghong Li, Ahmed Elazab, Huoling Luo, Yunbi Liu, Changmiao Wang,
- Abstract summary: Chronic liver disease represents a significant health challenge worldwide.
Recent evidence suggests that integrating multimodal data can provide more comprehensive prognostic information.
We present the Triple-Modal Interaction Chronic Liver Network (TMI-CLNet)
- Score: 3.2805467531625556
- License:
- Abstract: Chronic liver disease represents a significant health challenge worldwide and accurate prognostic evaluations are essential for personalized treatment plans. Recent evidence suggests that integrating multimodal data, such as computed tomography imaging, radiomic features, and clinical information, can provide more comprehensive prognostic information. However, modalities have an inherent heterogeneity, and incorporating additional modalities may exacerbate the challenges of heterogeneous data fusion. Moreover, existing multimodal fusion methods often struggle to adapt to richer medical modalities, making it difficult to capture inter-modal relationships. To overcome these limitations, We present the Triple-Modal Interaction Chronic Liver Network (TMI-CLNet). Specifically, we develop an Intra-Modality Aggregation module and a Triple-Modal Cross-Attention Fusion module, which are designed to eliminate intra-modality redundancy and extract cross-modal information, respectively. Furthermore, we design a Triple-Modal Feature Fusion loss function to align feature representations across modalities. Extensive experiments on the liver prognosis dataset demonstrate that our approach significantly outperforms existing state-of-the-art unimodal models and other multi-modal techniques. Our code is available at https://github.com/Mysterwll/liver.git.
Related papers
- Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.
Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.
Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.
Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - ITCFN: Incomplete Triple-Modal Co-Attention Fusion Network for Mild Cognitive Impairment Conversion Prediction [12.893857146169045]
Alzheimer's disease (AD) is a common neurodegenerative disease among the elderly.
Early prediction and timely intervention of its prodromal stage, mild cognitive impairment (MCI), can decrease the risk of advancing to AD.
arXiv Detail & Related papers (2025-01-20T05:12:31Z) - FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
We propose a new end-to-end framework, FORESEE, for robustly predicting patient survival by mining multimodal information.
Cross-fusion transformer effectively utilizes features at the cellular level, tissue level, and tumor heterogeneity level to correlate prognosis.
The hybrid attention encoder (HAE) uses the denoising contextual attention module to obtain the contextual relationship features.
We also propose an asymmetrically masked triplet masked autoencoder to reconstruct lost information within modalities.
arXiv Detail & Related papers (2024-05-13T12:39:08Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
This paper presents the Hybrid Early-fusion Attention Learning Network (HEALNet), a flexible multimodal fusion architecture.
We conduct multimodal survival analysis on Whole Slide Images and Multi-omic data on four cancer datasets from The Cancer Genome Atlas (TCGA)
HEALNet achieves state-of-the-art performance compared to other end-to-end trained fusion models.
arXiv Detail & Related papers (2023-11-15T17:06:26Z) - Missing-modality Enabled Multi-modal Fusion Architecture for Medical
Data [8.472576865966744]
Fusing multi-modal data can improve the performance of deep learning models.
Missing modalities are common for medical data due to patients' specificity.
This study developed an efficient multi-modal fusion architecture for medical data that was robust to missing modalities.
arXiv Detail & Related papers (2023-09-27T09:46:07Z) - Cross-Modal Causal Intervention for Medical Report Generation [109.83549148448469]
Medical report generation (MRG) is essential for computer-aided diagnosis and medication guidance.
Due to the spurious correlations within image-text data induced by visual and linguistic biases, it is challenging to generate accurate reports reliably describing lesion areas.
We propose a novel Visual-Linguistic Causal Intervention (VLCI) framework for MRG, which consists of a visual deconfounding module (VDM) and a linguistic deconfounding module (LDM)
arXiv Detail & Related papers (2023-03-16T07:23:55Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - FetReg: Placental Vessel Segmentation and Registration in Fetoscopy
Challenge Dataset [57.30136148318641]
Fetoscopy laser photocoagulation is a widely used procedure for the treatment of Twin-to-Twin Transfusion Syndrome (TTTS)
This may lead to increased procedural time and incomplete ablation, resulting in persistent TTTS.
Computer-assisted intervention may help overcome these challenges by expanding the fetoscopic field of view through video mosaicking and providing better visualization of the vessel network.
We present a large-scale multi-centre dataset for the development of generalized and robust semantic segmentation and video mosaicking algorithms for the fetal environment with a focus on creating drift-free mosaics from long duration fetoscopy videos.
arXiv Detail & Related papers (2021-06-10T17:14:27Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
We propose a novel multimodal segmentation framework which is robust to the absence of imaging modalities.
Our network uses feature disentanglement to decompose the input modalities into the modality-specific appearance code.
We validate our method on the important yet challenging multimodal brain tumor segmentation task with the BRATS challenge dataset.
arXiv Detail & Related papers (2020-02-22T14:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.