HASSLE-free: A unified Framework for Sparse plus Low-Rank Matrix Decomposition for LLMs
- URL: http://arxiv.org/abs/2502.00899v1
- Date: Sun, 02 Feb 2025 20:23:32 GMT
- Title: HASSLE-free: A unified Framework for Sparse plus Low-Rank Matrix Decomposition for LLMs
- Authors: Mehdi Makni, Kayhan Behdin, Zheng Xu, Natalia Ponomareva, Rahul Mazumder,
- Abstract summary: A promising compression scheme is to decompose foundation models' dense weights into a sum of sparse plus low-rank matrices.
In this paper, we design a unified framework coined HASSLE-free for (semi-structured) sparse plus low-rank matrix decomposition.
- Score: 15.575498324678373
- License:
- Abstract: The impressive capabilities of large foundation models come at a cost of substantial computing resources to serve them. Compressing these pre-trained models is of practical interest as it can democratize deploying them to the machine learning community at large by lowering the costs associated with inference. A promising compression scheme is to decompose foundation models' dense weights into a sum of sparse plus low-rank matrices. In this paper, we design a unified framework coined HASSLE-free for (semi-structured) sparse plus low-rank matrix decomposition of foundation models. Our framework introduces the local layer-wise reconstruction error objective for this decomposition, we demonstrate that prior work solves a relaxation of this optimization problem; and we provide efficient and scalable methods to minimize the exact introduced optimization problem. HASSLE-free substantially outperforms state-of-the-art methods in terms of the introduced objective and a wide range of LLM evaluation benchmarks. For the Llama3-8B model with a 2:4 sparsity component plus a 64-rank component decomposition, a compression scheme for which recent work shows important inference acceleration on GPUs, HASSLE-free reduces the test perplexity by 12% for the WikiText-2 dataset and reduces the gap (compared to the dense model) of the average of eight popular zero-shot tasks by 15% compared to existing methods.
Related papers
- FlexiGPT: Pruning and Extending Large Language Models with Low-Rank Weight Sharing [59.12511498024836]
We present a method to prune large language models (LLMs) that selectively prunes model blocks based on an importance score.
We propose a principled metric to replace each pruned block using a weight-sharing mechanism.
Empirical evaluations demonstrate substantial performance gains over existing methods.
arXiv Detail & Related papers (2025-01-24T18:46:37Z) - Search for Efficient Large Language Models [52.98684997131108]
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.
Weight pruning, quantization, and distillation have been embraced to compress LLMs, targeting memory reduction and inference acceleration.
Most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.
arXiv Detail & Related papers (2024-09-25T21:32:12Z) - A Convex-optimization-based Layer-wise Post-training Pruner for Large Language Models [24.185245582500876]
We introduce FISTAPruner, the first post-training pruner based on convex optimization models and algorithms.
FISTAPruner incorporates an intra-layer cumulative error correction mechanism and supports parallel pruning.
We evaluate FISTAPruner on models such as OPT, LLaMA, LLaMA-2, and LLaMA-3 with 125M to 70B parameters under unstructured and 2:4 semi-structured sparsity.
arXiv Detail & Related papers (2024-08-07T12:33:46Z) - From GaLore to WeLore: How Low-Rank Weights Non-uniformly Emerge from Low-Rank Gradients [86.40635601953446]
We study the emergence of low-rank structures across different layers of Modern Large Language Models.
We present Weight Low-Rank Projection (WeLore) that unifies weight compression and memory-efficient fine-tuning as ONE.
arXiv Detail & Related papers (2024-07-15T21:05:20Z) - Feature-based Low-Rank Compression of Large Language Models via Bayesian Optimization [40.15915011575071]
Low-rank compression is a promising technique to reduce non-essential parameters in large language models.
We conduct empirical research on the low-rank characteristics of large models.
We propose a low-rank compression method suitable for large language models.
arXiv Detail & Related papers (2024-05-17T08:27:12Z) - Low-Rank Prune-And-Factorize for Language Model Compression [18.088550230146247]
Matrix factorization fails to retain satisfactory performance under moderate to high compression rate.
We propose two techniques: sparsity-aware SVD and mixed-rank fine-tuning.
arXiv Detail & Related papers (2023-06-25T07:38:43Z) - Language model compression with weighted low-rank factorization [73.61874728240568]
We introduce Fisher information to weigh the importance of parameters affecting the model prediction.
We find that our resulting task accuracy is much closer to the original model's performance.
Our method can directly compress a task-specific model while achieving better performance than other compact model strategies.
arXiv Detail & Related papers (2022-06-30T21:57:07Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.