Fundamental limits of learning in sequence multi-index models and deep attention networks: High-dimensional asymptotics and sharp thresholds
- URL: http://arxiv.org/abs/2502.00901v1
- Date: Sun, 02 Feb 2025 20:27:11 GMT
- Title: Fundamental limits of learning in sequence multi-index models and deep attention networks: High-dimensional asymptotics and sharp thresholds
- Authors: Emanuele Troiani, Hugo Cui, Yatin Dandi, Florent Krzakala, Lenka Zdeborová,
- Abstract summary: We study the learning of deep attention neural networks, defined as the composition of multiple self-attention layers, with tied and low-rank weights.
Our analysis uncovers, in particular, how the different layers are learned sequentially.
- Score: 27.57989152496108
- License:
- Abstract: In this manuscript, we study the learning of deep attention neural networks, defined as the composition of multiple self-attention layers, with tied and low-rank weights. We first establish a mapping of such models to sequence multi-index models, a generalization of the widely studied multi-index model to sequential covariates, for which we establish a number of general results. In the context of Bayesian-optimal learning, in the limit of large dimension $D$ and commensurably large number of samples $N$, we derive a sharp asymptotic characterization of the optimal performance as well as the performance of the best-known polynomial-time algorithm for this setting --namely approximate message-passing--, and characterize sharp thresholds on the minimal sample complexity required for better-than-random prediction performance. Our analysis uncovers, in particular, how the different layers are learned sequentially. Finally, we discuss how this sequential learning can also be observed in a realistic setup.
Related papers
- Optimal Spectral Transitions in High-Dimensional Multi-Index Models [21.56591917674864]
We introduce spectral algorithms based on the linearization of a message passing scheme tailored to this problem.
We show that the proposed methods achieve the optimal reconstruction threshold.
Supported by numerical experiments and a rigorous theoretical framework, our work bridges critical gaps in the computational limits of weak learnability in multi-index model.
arXiv Detail & Related papers (2025-02-04T18:15:51Z) - Adaptive Sampled Softmax with Inverted Multi-Index: Methods, Theory and Applications [79.53938312089308]
The MIDX-Sampler is a novel adaptive sampling strategy based on an inverted multi-index approach.
Our method is backed by rigorous theoretical analysis, addressing key concerns such as sampling bias, gradient bias, convergence rates, and generalization error bounds.
arXiv Detail & Related papers (2025-01-15T04:09:21Z) - Informed deep hierarchical classification: a non-standard analysis inspired approach [0.0]
It consists in a multi-output deep neural network equipped with specific projection operators placed before each output layer.
The design of such an architecture, called lexicographic hybrid deep neural network (LH-DNN), has been possible by combining tools from different and quite distant research fields.
To assess the efficacy of the approach, the resulting network is compared against the B-CNN, a convolutional neural network tailored for hierarchical classification tasks.
arXiv Detail & Related papers (2024-09-25T14:12:50Z) - Finding the DeepDream for Time Series: Activation Maximization for Univariate Time Series [10.388704631887496]
We introduce Sequence Dreaming, a technique that adapts Maxim Activationization to analyze sequential information.
We visualize the temporal dynamics and patterns most influential in model decision-making processes.
arXiv Detail & Related papers (2024-08-20T08:09:44Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Learning Single-Index Models with Shallow Neural Networks [43.6480804626033]
We introduce a natural class of shallow neural networks and study its ability to learn single-index models via gradient flow.
We show that the corresponding optimization landscape is benign, which in turn leads to generalization guarantees that match the near-optimal sample complexity of dedicated semi-parametric methods.
arXiv Detail & Related papers (2022-10-27T17:52:58Z) - Layer Ensembles [95.42181254494287]
We introduce a method for uncertainty estimation that considers a set of independent categorical distributions for each layer of the network.
We show that the method can be further improved by ranking samples, resulting in models that require less memory and time to run.
arXiv Detail & Related papers (2022-10-10T17:52:47Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - Training Integrable Parameterizations of Deep Neural Networks in the
Infinite-Width Limit [0.0]
Large-width dynamics has emerged as a fruitful viewpoint and led to practical insights on real-world deep networks.
For two-layer neural networks, it has been understood that the nature of the trained model radically changes depending on the scale of the initial random weights.
We propose various methods to avoid this trivial behavior and analyze in detail the resulting dynamics.
arXiv Detail & Related papers (2021-10-29T07:53:35Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.