Deep Active Learning based Experimental Design to Uncover Synergistic Genetic Interactions for Host Targeted Therapeutics
- URL: http://arxiv.org/abs/2502.01012v1
- Date: Mon, 03 Feb 2025 03:03:21 GMT
- Title: Deep Active Learning based Experimental Design to Uncover Synergistic Genetic Interactions for Host Targeted Therapeutics
- Authors: Haonan Zhu, Mary Silva, Jose Cadena, Braden Soper, MichaĆ Lisicki, Braian Peetoom, Sergio E. Baranzini, Shivshankar Sundaram, Priyadip Ray, Jeff Drocco,
- Abstract summary: We present an integrated Deep Active Learning framework that incorporates information from a biological knowledge graph.
The framework is able to generate task-specific representations of genes while also balancing the exploration-exploitation trade-off to pinpoint highly effective double-knockdown pairs.
This is the first work to show promising results on double-gene knockdown experimental data of appreciable scale.
- Score: 4.247749070215763
- License:
- Abstract: Recent technological advances have introduced new high-throughput methods for studying host-virus interactions, but testing synergistic interactions between host gene pairs during infection remains relatively slow and labor intensive. Identification of multiple gene knockdowns that effectively inhibit viral replication requires a search over the combinatorial space of all possible target gene pairs and is infeasible via brute-force experiments. Although active learning methods for sequential experimental design have shown promise, existing approaches have generally been restricted to single-gene knockdowns or small-scale double knockdown datasets. In this study, we present an integrated Deep Active Learning (DeepAL) framework that incorporates information from a biological knowledge graph (SPOKE, the Scalable Precision Medicine Open Knowledge Engine) to efficiently search the configuration space of a large dataset of all pairwise knockdowns of 356 human genes in HIV infection. Through graph representation learning, the framework is able to generate task-specific representations of genes while also balancing the exploration-exploitation trade-off to pinpoint highly effective double-knockdown pairs. We additionally present an ensemble method for uncertainty quantification and an interpretation of the gene pairs selected by our algorithm via pathway analysis. To our knowledge, this is the first work to show promising results on double-gene knockdown experimental data of appreciable scale (356 by 356 matrix).
Related papers
- Active learning for efficient discovery of optimal gene combinations in the combinatorial perturbation space [13.409130886920579]
NAIAD is an active learning framework that efficiently discovers optimal gene pairs.
evaluated on four CRISPR perturbation datasets totaling over 350,000 genetic interactions.
Our framework improves the identification of novel, effective gene combinations, enabling more efficient CRISPR library design.
arXiv Detail & Related papers (2024-11-18T19:49:51Z) - Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
We present an innovative approach utilizing data-driven computational tools, leveraging an advanced Transformer model, to unearth gene-gene interactions.
A novel weighted diversified sampling algorithm computes the diversity score of each data sample in just two passes of the dataset.
arXiv Detail & Related papers (2024-10-21T03:35:23Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.
BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.
It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - GENER: A Parallel Layer Deep Learning Network To Detect Gene-Gene
Interactions From Gene Expression Data [0.7660368798066375]
We introduce a parallel-layer deep learning network designed exclusively for the identification of gene-gene relationships using gene expression data.
Our model achieved an average AUROC score of 0.834 on the combined BioGRID&DREAM5 dataset, outperforming competing methods in predicting gene-gene interactions.
arXiv Detail & Related papers (2023-10-05T15:45:53Z) - MuSe-GNN: Learning Unified Gene Representation From Multimodal
Biological Graph Data [22.938437500266847]
We introduce a novel model called Multimodal Similarity Learning Graph Neural Network.
It combines Multimodal Machine Learning and Deep Graph Neural Networks to learn gene representations from single-cell sequencing and spatial transcriptomic data.
Our model efficiently produces unified gene representations for the analysis of gene functions, tissue functions, diseases, and species evolution.
arXiv Detail & Related papers (2023-09-29T13:33:53Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Knowledge Graph Completion based on Tensor Decomposition for Disease
Gene Prediction [2.838553480267889]
We construct a biological knowledge graph centered on diseases and genes, and develop an end-to-end Knowledge graph completion model for Disease Gene Prediction.
KDGene introduces an interaction module between the embeddings of entities and relations to tensor decomposition, which can effectively enhance the information interaction in biological knowledge.
arXiv Detail & Related papers (2023-02-18T13:57:44Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Data-Driven Logistic Regression Ensembles With Applications in Genomics [0.0]
We propose a new approach for dealing with high-dimensional binary classification problems that combines ideas from regularization and ensembling.
We demonstrate the good performance of our method in terms of prediction accuracy and identification of key biomarkers using several medical datasets involving common diseases such as cancer, multiple sclerosis and psoriasis.
arXiv Detail & Related papers (2021-02-17T05:57:26Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.