Geoinformatics-Guided Machine Learning for Power Plant Classification
- URL: http://arxiv.org/abs/2502.01039v1
- Date: Mon, 03 Feb 2025 04:19:45 GMT
- Title: Geoinformatics-Guided Machine Learning for Power Plant Classification
- Authors: Blessing Austin-Gabriel, Aparna S. Varde, Hao Liu,
- Abstract summary: This paper proposes an approach in the area of Knowledge-Guided Machine Learning (KGML)
It comprises CNN (Convolutional Neural Networks) and ViT (Vision Transformers) along with GIS (Geographic Information Systems)
- Score: 5.860728917811881
- License:
- Abstract: This paper proposes an approach in the area of Knowledge-Guided Machine Learning (KGML) via a novel integrated framework comprising CNN (Convolutional Neural Networks) and ViT (Vision Transformers) along with GIS (Geographic Information Systems) to enhance power plant classification in the context of energy management. Knowledge from geoinformatics derived through Spatial Masks (SM) in GIS is infused into an architecture of CNN and ViT, in this proposed KGML approach. It is found to provide much better performance compared to the baseline of CNN and ViT only in the classification of multiple types of power plants from real satellite imagery, hence emphasizing the vital role of the geoinformatics-guided approach. This work makes a contribution to the main theme of KGML that can be beneficial in many AI systems today. It makes broader impacts on AI in Smart Cities, and Environmental Computing.
Related papers
- GLTW: Joint Improved Graph Transformer and LLM via Three-Word Language for Knowledge Graph Completion [52.026016846945424]
We propose a new method called GLTW, which encodes the structural information of KGs and merges it with Large Language Models.
Specifically, we introduce an improved Graph Transformer (iGT) that effectively encodes subgraphs with both local and global structural information.
Also, we develop a subgraph-based multi-classification training objective, using all entities within KG as classification objects, to boost learning efficiency.
arXiv Detail & Related papers (2025-02-17T06:02:59Z) - Power Plant Detection for Energy Estimation using GIS with Remote Sensing, CNN & Vision Transformers [1.563479906200713]
We propose a hybrid model for power plant detection to assist energy estimation applications, by pipelining GIS having Remote Sensing capabilities with CNN (Convolutional Neural Networks) and ViT (Vision Transformers)
Our proposed approach enables real-time analysis with multiple data types on a common map via the GIS, entails feature-extraction abilities due to the CNN, and captures long-range dependencies through the ViT.
arXiv Detail & Related papers (2024-12-06T12:15:11Z) - Customized Information and Domain-centric Knowledge Graph Construction with Large Language Models [0.0]
We propose a novel approach based on knowledge graphs to provide timely access to structured information.
Our framework encompasses a text mining process, which includes information retrieval, keyphrase extraction, semantic network creation, and topic map visualization.
We apply our methodology to the domain of automotive electrical systems to demonstrate the approach, which is scalable.
arXiv Detail & Related papers (2024-09-30T07:08:28Z) - SafePowerGraph: Safety-aware Evaluation of Graph Neural Networks for Transmission Power Grids [55.35059657148395]
We present SafePowerGraph, the first simulator-agnostic, safety-oriented framework and benchmark for Graph Neural Networks (GNNs) in power systems (PS) operations.
SafePowerGraph integrates multiple PF and OPF simulators and assesses GNN performance under diverse scenarios, including energy price variations and power line outages.
arXiv Detail & Related papers (2024-07-17T09:01:38Z) - Foundation Models for the Electric Power Grid [53.02072064670517]
Foundation models (FMs) currently dominate news headlines.
We argue that an FM learning from diverse grid data and topologies could unlock transformative capabilities.
We discuss a power grid FM concept, namely GridFM, based on graph neural networks and show how different downstream tasks benefit.
arXiv Detail & Related papers (2024-07-12T17:09:47Z) - SSL-SoilNet: A Hybrid Transformer-based Framework with Self-Supervised Learning for Large-scale Soil Organic Carbon Prediction [2.554658234030785]
This study introduces a novel approach that aims to learn the geographical link between multimodal features via self-supervised contrastive learning.
The proposed approach has undergone rigorous testing on two distinct large-scale datasets.
arXiv Detail & Related papers (2023-08-07T13:44:44Z) - Remote Sensing Image Classification using Transfer Learning and
Attention Based Deep Neural Network [59.86658316440461]
We propose a deep learning based framework for RSISC, which makes use of the transfer learning technique and multihead attention scheme.
The proposed deep learning framework is evaluated on the benchmark NWPU-RESISC45 dataset and achieves the best classification accuracy of 94.7%.
arXiv Detail & Related papers (2022-06-20T10:05:38Z) - Efficient Hybrid Transformer: Learning Global-local Context for Urban
Sence Segmentation [11.237929167356725]
We propose an efficient hybrid Transformer (EHT) for semantic segmentation of urban scene images.
EHT takes advantage of CNNs and Transformer, learning global-local context to strengthen the feature representation.
The proposed EHT achieves a 67.0% mIoU on the UAVid test set and outperforms other lightweight models significantly.
arXiv Detail & Related papers (2021-09-18T13:55:38Z) - Smart Grid: A Survey of Architectural Elements, Machine Learning and
Deep Learning Applications and Future Directions [0.0]
Big data analytics, machine learning (ML), and deep learning (DL) plays a key role when it comes to the analysis of this massive amount of data and generation of valuable insights.
This paper explores and surveys the Smart grid architectural elements, machine learning, and deep learning-based applications and approaches in the context of the Smart grid.
arXiv Detail & Related papers (2020-10-16T01:40:24Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Distilling Knowledge from Graph Convolutional Networks [146.71503336770886]
Existing knowledge distillation methods focus on convolutional neural networks (CNNs)
We propose the first dedicated approach to distilling knowledge from a pre-trained graph convolutional network (GCN) model.
We show that our method achieves the state-of-the-art knowledge distillation performance for GCN models.
arXiv Detail & Related papers (2020-03-23T18:23:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.