BC-GAN: A Generative Adversarial Network for Synthesizing a Batch of Collocated Clothing
- URL: http://arxiv.org/abs/2502.01080v1
- Date: Mon, 03 Feb 2025 05:41:41 GMT
- Title: BC-GAN: A Generative Adversarial Network for Synthesizing a Batch of Collocated Clothing
- Authors: Dongliang Zhou, Haijun Zhang, Jianghong Ma, Jianyang Shi,
- Abstract summary: Collocated clothing synthesis using generative networks has significant potential economic value to increase revenue in the fashion industry.
We introduce a novel batch clothing generation framework, named BC-GAN, which is able to synthesize multiple visually-collocated clothing images simultaneously.
Our model was examined in a large-scale dataset with compatible outfits constructed by ourselves.
- Score: 17.91576511810969
- License:
- Abstract: Collocated clothing synthesis using generative networks has become an emerging topic in the field of fashion intelligence, as it has significant potential economic value to increase revenue in the fashion industry. In previous studies, several works have attempted to synthesize visually-collocated clothing based on a given clothing item using generative adversarial networks (GANs) with promising results. These works, however, can only accomplish the synthesis of one collocated clothing item each time. Nevertheless, users may require different clothing items to meet their multiple choices due to their personal tastes and different dressing scenarios. To address this limitation, we introduce a novel batch clothing generation framework, named BC-GAN, which is able to synthesize multiple visually-collocated clothing images simultaneously. In particular, to further improve the fashion compatibility of synthetic results, BC-GAN proposes a new fashion compatibility discriminator in a contrastive learning perspective by fully exploiting the collocation relationship among all clothing items. Our model was examined in a large-scale dataset with compatible outfits constructed by ourselves. Extensive experiment results confirmed the effectiveness of our proposed BC-GAN in comparison to state-of-the-art methods in terms of diversity, visual authenticity, and fashion compatibility.
Related papers
- Learning to Synthesize Compatible Fashion Items Using Semantic Alignment and Collocation Classification: An Outfit Generation Framework [59.09707044733695]
We propose a novel outfit generation framework, i.e., OutfitGAN, with the aim of synthesizing an entire outfit.
OutfitGAN includes a semantic alignment module, which is responsible for characterizing the mapping correspondence between the existing fashion items and the synthesized ones.
In order to evaluate the performance of our proposed models, we built a large-scale dataset consisting of 20,000 fashion outfits.
arXiv Detail & Related papers (2025-02-05T12:13:53Z) - Towards Intelligent Design: A Self-driven Framework for Collocated Clothing Synthesis Leveraging Fashion Styles and Textures [17.35328594773488]
Collocated clothing synthesis (CCS) has emerged as a pivotal topic in fashion technology.
Previous investigations have relied on using paired outfits, such as a pair of matching upper and lower clothing, to train a generative model for achieving this task.
We introduce a new self-driven framework, named style- and texture-guided generative network (ST-Net), to synthesize collocated clothing without the necessity for paired outfits.
arXiv Detail & Related papers (2025-01-23T05:46:08Z) - Multi-Garment Customized Model Generation [3.1679243514285194]
Multi-Garment Customized Model Generation is a unified framework based on Latent Diffusion Models (LDMs)
Our framework supports the conditional generation of multiple garments through decoupled multi-garment feature fusion.
The proposed garment encoder is a plug-and-play module that can be combined with other extension modules.
arXiv Detail & Related papers (2024-08-09T17:57:33Z) - Clothes-Invariant Feature Learning by Causal Intervention for
Clothes-Changing Person Re-identification [118.23912884472794]
Clothes-invariant feature extraction is critical to the clothes-changing person re-identification (CC-ReID)
We argue that there exists a strong spurious correlation between clothes and human identity, that restricts the common likelihood-based ReID method P(Y|X) to extract clothes-irrelevant features.
We propose a new Causal Clothes-Invariant Learning (CCIL) method to achieve clothes-invariant feature learning.
arXiv Detail & Related papers (2023-05-10T13:48:24Z) - Transformer-based Graph Neural Networks for Outfit Generation [22.86041284499166]
TGNN exploits multi-headed self attention to capture relations between clothing items in a graph as a message passing step in Convolutional Graph Neural Networks.
We propose a transformer-based architecture, which exploits multi-headed self attention to capture relations between clothing items in a graph as a message passing step in Convolutional Graph Neural Networks.
arXiv Detail & Related papers (2023-04-17T09:18:45Z) - Arbitrary Virtual Try-On Network: Characteristics Preservation and
Trade-off between Body and Clothing [85.74977256940855]
We propose an Arbitrary Virtual Try-On Network (AVTON) for all-type clothes.
AVTON can synthesize realistic try-on images by preserving and trading off characteristics of the target clothes and the reference person.
Our approach can achieve better performance compared with the state-of-the-art virtual try-on methods.
arXiv Detail & Related papers (2021-11-24T08:59:56Z) - Cloth Interactive Transformer for Virtual Try-On [106.21605249649957]
We propose a novel two-stage cloth interactive transformer (CIT) method for the virtual try-on task.
In the first stage, we design a CIT matching block, aiming to precisely capture the long-range correlations between the cloth-agnostic person information and the in-shop cloth information.
In the second stage, we put forth a CIT reasoning block for establishing global mutual interactive dependencies among person representation, the warped clothing item, and the corresponding warped cloth mask.
arXiv Detail & Related papers (2021-04-12T14:45:32Z) - SMPLicit: Topology-aware Generative Model for Clothed People [65.84665248796615]
We introduce SMPLicit, a novel generative model to jointly represent body pose, shape and clothing geometry.
In the experimental section, we demonstrate SMPLicit can be readily used for fitting 3D scans and for 3D reconstruction in images of dressed people.
arXiv Detail & Related papers (2021-03-11T18:57:03Z) - Apparel-invariant Feature Learning for Apparel-changed Person
Re-identification [70.16040194572406]
Most public ReID datasets are collected in a short time window in which persons' appearance rarely changes.
In real-world applications such as in a shopping mall, the same person's clothing may change, and different persons may wearing similar clothes.
It is critical to learn an apparel-invariant person representation under cases like cloth changing or several persons wearing similar clothes.
arXiv Detail & Related papers (2020-08-14T03:49:14Z) - Fashion Recommendation and Compatibility Prediction Using Relational
Network [18.13692056232815]
We develop a Relation Network (RN) to develop new compatibility learning models.
FashionRN learns the compatibility of an entire outfit, with an arbitrary number of items, in an arbitrary order.
We evaluate our model using a large dataset of 49,740 outfits that we collected from Polyvore website.
arXiv Detail & Related papers (2020-05-13T21:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.