Language Models Prefer What They Know: Relative Confidence Estimation via Confidence Preferences
- URL: http://arxiv.org/abs/2502.01126v1
- Date: Mon, 03 Feb 2025 07:43:27 GMT
- Title: Language Models Prefer What They Know: Relative Confidence Estimation via Confidence Preferences
- Authors: Vaishnavi Shrivastava, Ananya Kumar, Percy Liang,
- Abstract summary: Language models (LMs) should provide reliable confidence estimates to help users detect mistakes in their outputs and defer to human experts when necessary.
We propose relative confidence estimation, where we match up questions against each other and ask the model to make relative judgments of confidence.
Treating each question as a "player" in a series of matchups against other questions and the model's preferences as match outcomes, we can use rank aggregation methods like Elo rating and Bradley-Terry to translate the model's confidence preferences into confidence scores.
- Score: 62.52739672949452
- License:
- Abstract: Language models (LMs) should provide reliable confidence estimates to help users detect mistakes in their outputs and defer to human experts when necessary. Asking a language model to assess its confidence ("Score your confidence from 0-1.") is a natural way of evaluating its uncertainty. However, models struggle to provide absolute assessments of confidence (i.e. judging confidence in answering a question independent of other questions) and the coarse-grained scores they produce are not useful for evaluating the correctness of their answers. We propose relative confidence estimation, where we match up questions against each other and ask the model to make relative judgments of confidence ("Which question are you more confident in answering correctly?"). Treating each question as a "player" in a series of matchups against other questions and the model's preferences as match outcomes, we can use rank aggregation methods like Elo rating and Bradley-Terry to translate the model's confidence preferences into confidence scores. We evaluate relative confidence estimation against absolute confidence estimation and self-consistency confidence methods on five state-of-the-art LMs -- GPT-4, GPT-4o, Gemini 1.5 Pro, Claude 3.5 Sonnet, and Llama 3.1 405B -- across 14 challenging STEM, social science, and commonsense reasoning question answering tasks. Our results demonstrate that relative confidence estimation consistently provides more reliable confidence scores than absolute confidence estimation, with average gains of 3.5% in selective classification AUC over direct absolute confidence estimation methods and 1.7% over self-consistency approaches across all models and datasets.
Related papers
- Confidence in the Reasoning of Large Language Models [0.0]
Confidence is measured in terms of persistence in keeping their answer when prompted to reconsider.
Confidence is only partially explained by the underlying token-level probability.
arXiv Detail & Related papers (2024-12-19T10:04:29Z) - Fact-Level Confidence Calibration and Self-Correction [64.40105513819272]
We propose a Fact-Level framework that calibrates confidence to relevance-weighted correctness at the fact level.
We also develop Confidence-Guided Fact-level Self-Correction ($textbfConFix$), which uses high-confidence facts within a response as additional knowledge to improve low-confidence ones.
arXiv Detail & Related papers (2024-11-20T14:15:18Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
We introduce the concept of Confidence-Probability Alignment.
We probe the alignment between models' internal and expressed confidence.
Among the models analyzed, OpenAI's GPT-4 showed the strongest confidence-probability alignment.
arXiv Detail & Related papers (2024-05-25T15:42:04Z) - When to Trust LLMs: Aligning Confidence with Response Quality [49.371218210305656]
We propose CONfidence-Quality-ORDer-preserving alignment approach (CONQORD)
It integrates quality reward and order-preserving alignment reward functions.
Experiments demonstrate that CONQORD significantly improves the alignment performance between confidence and response accuracy.
arXiv Detail & Related papers (2024-04-26T09:42:46Z) - Llamas Know What GPTs Don't Show: Surrogate Models for Confidence
Estimation [70.27452774899189]
Large language models (LLMs) should signal low confidence on examples where they are incorrect, instead of misleading the user.
As of November 2023, state-of-the-art LLMs do not provide access to these probabilities.
Our best method composing linguistic confidences and surrogate model probabilities gives state-of-the-art confidence estimates on all 12 datasets.
arXiv Detail & Related papers (2023-11-15T11:27:44Z) - MACEst: The reliable and trustworthy Model Agnostic Confidence Estimator [0.17188280334580192]
We argue that any confidence estimates based upon standard machine learning point prediction algorithms are fundamentally flawed.
We present MACEst, a Model Agnostic Confidence Estimator, which provides reliable and trustworthy confidence estimates.
arXiv Detail & Related papers (2021-09-02T14:34:06Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
We investigate confidence estimation for end-to-end automatic speech recognition (ASR)
We provide an extensive benchmark of popular confidence methods on four well-known speech datasets.
Our results suggest a strong baseline can be obtained by scaling the logits by a learnt temperature.
arXiv Detail & Related papers (2021-01-14T09:51:59Z) - Binary Classification from Positive Data with Skewed Confidence [85.18941440826309]
Positive-confidence (Pconf) classification is a promising weakly-supervised learning method.
In practice, the confidence may be skewed by bias arising in an annotation process.
We introduce the parameterized model of the skewed confidence, and propose the method for selecting the hyper parameter.
arXiv Detail & Related papers (2020-01-29T00:04:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.