Deep Reinforcement Learning for Dynamic Resource Allocation in Wireless Networks
- URL: http://arxiv.org/abs/2502.01129v1
- Date: Mon, 03 Feb 2025 07:49:00 GMT
- Title: Deep Reinforcement Learning for Dynamic Resource Allocation in Wireless Networks
- Authors: Shubham Malhotra,
- Abstract summary: This report investigates the application of deep reinforcement learning (DRL) algorithms for dynamic resource allocation in wireless communication systems.
The choice of algorithm and learning rate significantly influences system performance, with DRL providing more efficient resource allocation compared to traditional methods.
- Score: 0.0
- License:
- Abstract: This report investigates the application of deep reinforcement learning (DRL) algorithms for dynamic resource allocation in wireless communication systems. An environment that includes a base station, multiple antennas, and user equipment is created. Using the RLlib library, various DRL algorithms such as Deep Q-Network (DQN) and Proximal Policy Optimization (PPO) are then applied. These algorithms are compared based on their ability to optimize resource allocation, focusing on the impact of different learning rates and scheduling policies. The findings demonstrate that the choice of algorithm and learning rate significantly influences system performance, with DRL providing more efficient resource allocation compared to traditional methods.
Related papers
- Federated Reinforcement Learning for Resource Allocation in V2X Networks [46.6256432514037]
Resource allocation significantly impacts the performance of vehicle-to-everything (V2X) networks.
Most existing algorithms for resource allocation are based on optimization or machine learning.
In this paper, we explore resource allocation in a V2X network under the framework of federated reinforcement learning.
arXiv Detail & Related papers (2023-10-15T15:26:54Z) - Deep Black-Box Reinforcement Learning with Movement Primitives [15.184283143878488]
We present a new algorithm for deep reinforcement learning (RL)
It is based on differentiable trust region layers, a successful on-policy deep RL algorithm.
We compare our ERL algorithm to state-of-the-art step-based algorithms in many complex simulated robotic control tasks.
arXiv Detail & Related papers (2022-10-18T06:34:52Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - Deep Reinforcement Learning for Resource Constrained Multiclass
Scheduling in Wireless Networks [0.0]
In our setup, the available limited bandwidth resources are allocated in order to serve randomly arriving service demands.
We propose a distributional Deep Deterministic Policy Gradient (DDPG) algorithm combined with Deep Sets to tackle the problem.
Our proposed algorithm is tested on both synthetic and real data, showing consistent gains against state-of-the-art conventional methods.
arXiv Detail & Related papers (2020-11-27T09:49:38Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Learning Centric Power Allocation for Edge Intelligence [84.16832516799289]
Edge intelligence has been proposed, which collects distributed data and performs machine learning at the edge.
This paper proposes a learning centric power allocation (LCPA) method, which allocates radio resources based on an empirical classification error model.
Experimental results show that the proposed LCPA algorithm significantly outperforms other power allocation algorithms.
arXiv Detail & Related papers (2020-07-21T07:02:07Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z) - Stacked Auto Encoder Based Deep Reinforcement Learning for Online
Resource Scheduling in Large-Scale MEC Networks [44.40722828581203]
An online resource scheduling framework is proposed for minimizing the sum of weighted task latency for all the Internet of things (IoT) users.
A deep reinforcement learning (DRL) based solution is proposed, which includes the following components.
A preserved and prioritized experience replay (2p-ER) is introduced to assist the DRL to train the policy network and find the optimal offloading policy.
arXiv Detail & Related papers (2020-01-24T23:01:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.