HyperSHAP: Shapley Values and Interactions for Hyperparameter Importance
- URL: http://arxiv.org/abs/2502.01276v1
- Date: Mon, 03 Feb 2025 11:47:52 GMT
- Title: HyperSHAP: Shapley Values and Interactions for Hyperparameter Importance
- Authors: Marcel Wever, Maximilian Muschalik, Fabian Fumagalli, Marius Lindauer,
- Abstract summary: We propose a game-theoretic explainability framework for HPO based on Shapley values and interactions.
Our results show that while higher-order interactions exist, most performance improvements can be explained by focusing on lower-order representations.
- Score: 14.971231302401558
- License:
- Abstract: Hyperparameter optimization (HPO) is a crucial step in achieving strong predictive performance. However, the impact of individual hyperparameters on model generalization is highly context-dependent, prohibiting a one-size-fits-all solution and requiring opaque automated machine learning (AutoML) systems to find optimal configurations. The black-box nature of most AutoML systems undermines user trust and discourages adoption. To address this, we propose a game-theoretic explainability framework for HPO that is based on Shapley values and interactions. Our approach provides an additive decomposition of a performance measure across hyperparameters, enabling local and global explanations of hyperparameter importance and interactions. The framework, named HyperSHAP, offers insights into ablations, the tunability of learning algorithms, and optimizer behavior across different hyperparameter spaces. We evaluate HyperSHAP on various HPO benchmarks by analyzing the interaction structure of the HPO problem. Our results show that while higher-order interactions exist, most performance improvements can be explained by focusing on lower-order representations.
Related papers
- Parameter Optimization with Conscious Allocation (POCA) [4.478575931884855]
Hyperband-based approaches to machine learning are among the most effective.
We present.
the new.
Optimization with Conscious Allocation (POCA), a hyperband-based algorithm that adaptively allocates the inputted.
budget to the hyperparameter configurations it generates.
POCA finds strong configurations faster in both settings.
arXiv Detail & Related papers (2023-12-29T00:13:55Z) - Interactive Hyperparameter Optimization in Multi-Objective Problems via
Preference Learning [65.51668094117802]
We propose a human-centered interactive HPO approach tailored towards multi-objective machine learning (ML)
Instead of relying on the user guessing the most suitable indicator for their needs, our approach automatically learns an appropriate indicator.
arXiv Detail & Related papers (2023-09-07T09:22:05Z) - Deep Ranking Ensembles for Hyperparameter Optimization [9.453554184019108]
We present a novel method that meta-learns neural network surrogates optimized for ranking the configurations' performances while modeling their uncertainty via ensembling.
In a large-scale experimental protocol comprising 12 baselines, 16 HPO search spaces and 86 datasets/tasks, we demonstrate that our method achieves new state-of-the-art results in HPO.
arXiv Detail & Related papers (2023-03-27T13:52:40Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
We propose a gradient-based subset selection framework for hyper- parameter tuning.
We show that using gradient-based data subsets for hyper- parameter tuning achieves significantly faster turnaround times and speedups of 3$times$-30$times$.
arXiv Detail & Related papers (2022-03-15T19:25:01Z) - Towards Robust and Automatic Hyper-Parameter Tunning [39.04604349338802]
We introduce a new class of HPO method and explore how the low-rank factorization of intermediate layers of a convolutional network can be used to define an analytical response surface.
We quantify how this surface behaves as a surrogate to model performance and can be solved using a trust-region search algorithm, which we call autoHyper.
arXiv Detail & Related papers (2021-11-28T05:27:34Z) - Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
Open Challenges [5.139260825952818]
This paper reviews important HPO methods such as grid or random search, evolutionary algorithms, Bayesian optimization, Hyperband and racing.
It gives practical recommendations regarding important choices to be made when conducting HPO, including the HPO algorithms themselves, performance evaluation, how to combine HPO with ML pipelines, runtime improvements, and parallelization.
arXiv Detail & Related papers (2021-07-13T04:55:47Z) - HyperNP: Interactive Visual Exploration of Multidimensional Projection
Hyperparameters [61.354362652006834]
HyperNP is a scalable method that allows for real-time interactive exploration of projection methods by training neural network approximations.
We evaluate the performance of the HyperNP across three datasets in terms of performance and speed.
arXiv Detail & Related papers (2021-06-25T17:28:14Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
We propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)
Specifically, we first formulate hyperparameter optimization as an A-based constrained optimization problem.
Then, we use the average zeroth-order hyper-gradients to update hyper parameters.
arXiv Detail & Related papers (2021-02-17T21:03:05Z) - HyperSTAR: Task-Aware Hyperparameters for Deep Networks [52.50861379908611]
HyperSTAR is a task-aware method to warm-start HPO for deep neural networks.
It learns a dataset (task) representation along with the performance predictor directly from raw images.
It evaluates 50% less configurations to achieve the best performance compared to existing methods.
arXiv Detail & Related papers (2020-05-21T08:56:50Z) - Automatic Hyper-Parameter Optimization Based on Mapping Discovery from
Data to Hyper-Parameters [3.37314595161109]
We propose an efficient automatic parameter optimization approach, which is based on the mapping from data to the corresponding hyper- parameters.
We show that the proposed approaches outperform the state-of-the-art apporaches significantly.
arXiv Detail & Related papers (2020-03-03T19:26:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.