Detecting Backdoor Samples in Contrastive Language Image Pretraining
- URL: http://arxiv.org/abs/2502.01385v2
- Date: Mon, 10 Feb 2025 08:04:21 GMT
- Title: Detecting Backdoor Samples in Contrastive Language Image Pretraining
- Authors: Hanxun Huang, Sarah Erfani, Yige Li, Xingjun Ma, James Bailey,
- Abstract summary: Contrastive language-image pretraining (CLIP) has been found to be vulnerable to poisoning backdoor attacks.
This raises security concerns on the current practice of pretraining large-scale models on unscrutinized web data using CLIP.
- Score: 32.85582585781569
- License:
- Abstract: Contrastive language-image pretraining (CLIP) has been found to be vulnerable to poisoning backdoor attacks where the adversary can achieve an almost perfect attack success rate on CLIP models by poisoning only 0.01\% of the training dataset. This raises security concerns on the current practice of pretraining large-scale models on unscrutinized web data using CLIP. In this work, we analyze the representations of backdoor-poisoned samples learned by CLIP models and find that they exhibit unique characteristics in their local subspace, i.e., their local neighborhoods are far more sparse than that of clean samples. Based on this finding, we conduct a systematic study on detecting CLIP backdoor attacks and show that these attacks can be easily and efficiently detected by traditional density ratio-based local outlier detectors, whereas existing backdoor sample detection methods fail. Our experiments also reveal that an unintentional backdoor already exists in the original CC3M dataset and has been trained into a popular open-source model released by OpenCLIP. Based on our detector, one can clean up a million-scale web dataset (e.g., CC3M) efficiently within 15 minutes using 4 Nvidia A100 GPUs. The code is publicly available in our \href{https://github.com/HanxunH/Detect-CLIP-Backdoor-Samples}{GitHub repository}.
Related papers
- Model Pairing Using Embedding Translation for Backdoor Attack Detection on Open-Set Classification Tasks [63.269788236474234]
We propose to use model pairs on open-set classification tasks for detecting backdoors.
We show that this score, can be an indicator for the presence of a backdoor despite models being of different architectures.
This technique allows for the detection of backdoors on models designed for open-set classification tasks, which is little studied in the literature.
arXiv Detail & Related papers (2024-02-28T21:29:16Z) - Erasing Self-Supervised Learning Backdoor by Cluster Activation Masking [65.44477004525231]
Researchers have recently found that Self-Supervised Learning (SSL) is vulnerable to backdoor attacks.
In this paper, we propose to erase the SSL backdoor by cluster activation masking and propose a novel PoisonCAM method.
Our method achieves 96% accuracy for backdoor trigger detection compared to 3% of the state-of-the-art method on poisoned ImageNet-100.
arXiv Detail & Related papers (2023-12-13T08:01:15Z) - BadCLIP: Trigger-Aware Prompt Learning for Backdoor Attacks on CLIP [55.33331463515103]
BadCLIP is built on a novel and effective mechanism in backdoor attacks on CLIP.
It consists of a learnable trigger applied to images and a trigger-aware context generator, such that the trigger can change text features via trigger-aware prompts.
arXiv Detail & Related papers (2023-11-26T14:24:13Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - CleanCLIP: Mitigating Data Poisoning Attacks in Multimodal Contrastive
Learning [63.72975421109622]
CleanCLIP is a finetuning framework that weakens the learned spurious associations introduced by backdoor attacks.
CleanCLIP maintains model performance on benign examples while erasing a range of backdoor attacks on multimodal contrastive learning.
arXiv Detail & Related papers (2023-03-06T17:48:32Z) - Training set cleansing of backdoor poisoning by self-supervised
representation learning [0.0]
A backdoor or Trojan attack is an important type of data poisoning attack against deep neural network (DNN)
We show that supervised training may build stronger association between the backdoor pattern and the associated target class than that between normal features and the true class of origin.
We propose to use unsupervised representation learning to avoid emphasising backdoor-poisoned training samples and learn a similar feature embedding for samples of the same class.
arXiv Detail & Related papers (2022-10-19T03:29:58Z) - Invisible Backdoor Attacks Using Data Poisoning in the Frequency Domain [8.64369418938889]
We propose a generalized backdoor attack method based on the frequency domain.
It can implement backdoor implantation without mislabeling and accessing the training process.
We evaluate our approach in the no-label and clean-label cases on three datasets.
arXiv Detail & Related papers (2022-07-09T07:05:53Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.