Categorical Schrödinger Bridge Matching
- URL: http://arxiv.org/abs/2502.01416v1
- Date: Mon, 03 Feb 2025 14:55:28 GMT
- Title: Categorical Schrödinger Bridge Matching
- Authors: Grigoriy Ksenofontov, Alexander Korotin,
- Abstract summary: The Schr"odinger Bridge (SB) is a powerful framework for solving generative modeling tasks such as unpaired domain translation.
We provide a theoretical and algorithmic foundation for solving SB in discrete spaces using the recently introduced Iterative Markovian Fitting (IMF) procedure.
This enables us to develop a practical computational algorithm for SB which we call Categorical Schr"odinger Bridge Matching (CSBM)
- Score: 58.760054965084656
- License:
- Abstract: The Schr\"odinger Bridge (SB) is a powerful framework for solving generative modeling tasks such as unpaired domain translation. Most SB-related research focuses on continuous data space $\mathbb{R}^{D}$ and leaves open theoretical and algorithmic questions about applying SB methods to discrete data, e.g, on finite spaces $\mathbb{S}^{D}$. Notable examples of such sets $\mathbb{S}$ are codebooks of vector-quantized (VQ) representations of modern autoencoders, tokens in texts, categories of atoms in molecules, etc. In this paper, we provide a theoretical and algorithmic foundation for solving SB in discrete spaces using the recently introduced Iterative Markovian Fitting (IMF) procedure. Specifically, we theoretically justify the convergence of discrete-time IMF (D-IMF) to SB in discrete spaces. This enables us to develop a practical computational algorithm for SB which we call Categorical Schr\"odinger Bridge Matching (CSBM). We show the performance of CSBM via a series of experiments with synthetic data and VQ representations of images.
Related papers
- Entanglement-Assisted Coding for Arbitrary Linear Computations Over a Quantum MAC [34.32444379837011]
We study a linear computation problem over a quantum multiple access channel (LC-QMAC)
We propose an achievable scheme for LC-QMAC based on the stabilizer formalism and the ideas from entanglement-assisted quantum error-correcting codes (EAQECC)
arXiv Detail & Related papers (2025-01-27T18:35:33Z) - Latent Schrodinger Bridge: Prompting Latent Diffusion for Fast Unpaired Image-to-Image Translation [58.19676004192321]
Diffusion models (DMs), which enable both image generation from noise and inversion from data, have inspired powerful unpaired image-to-image (I2I) translation algorithms.
We tackle this problem with Schrodinger Bridges (SBs), which are differential equations (SDEs) between distributions with minimal transport cost.
Inspired by this observation, we propose Latent Schrodinger Bridges (LSBs) that approximate the SB ODE via pre-trained Stable Diffusion.
We demonstrate that our algorithm successfully conduct competitive I2I translation in unsupervised setting with only a fraction of cost required by previous DM-
arXiv Detail & Related papers (2024-11-22T11:24:14Z) - An encoding of argumentation problems using quadratic unconstrained binary optimization [1.104960878651584]
We develop a way to encode several NP-Complete problems in Abstract Argumentation to Quadratic Unconstrained Binary Optimization problems.
With the QUBO formulation, exploiting new computing architectures, such as Quantum and Digital Annealers, is possible.
We performed tests to prove the correctness and applicability of classical problems in Argumentation and enforcement of argument sets.
arXiv Detail & Related papers (2024-09-09T11:29:46Z) - Light Schrödinger Bridge [72.88707358656869]
We develop a lightweight, simulation-free and theoretically justified Schr"odinger Bridges solver.
Our light solver resembles the Gaussian mixture model which is widely used for density estimation.
Inspired by this similarity, we also prove an important theoretical result showing that our light solver is a universal approximator of SBs.
arXiv Detail & Related papers (2023-10-02T13:06:45Z) - Building the Bridge of Schr\"odinger: A Continuous Entropic Optimal
Transport Benchmark [96.06787302688595]
We propose a novel way to create pairs of probability distributions for which the ground truth OT solution is known by the construction.
We use these benchmark pairs to test how well existing neural EOT/SB solvers actually compute the EOT solution.
arXiv Detail & Related papers (2023-06-16T20:03:36Z) - Tree-Based Diffusion Schr\"odinger Bridge with Applications to
Wasserstein Barycenters [44.75675404104031]
We develop Tree-based Diffusion Schr"odinger Bridge (TreeDSB), an extension of the Diffusion Schr"odinger Bridge (DSB) algorithm.
A notable use case of our methodology is to compute Wasserstein barycenters which can be recast as the solution of a mOT problem on a star-shaped tree.
arXiv Detail & Related papers (2023-05-26T00:50:47Z) - Unpaired Image-to-Image Translation via Neural Schr\"odinger Bridge [70.79973551604539]
We propose Unpaired Neural Schr"odinger Bridge (UNSB), which expresses the SB problem as a sequence of adversarial learning problems.
UNSB is scalable and successfully solves various unpaired I2I translation tasks.
arXiv Detail & Related papers (2023-05-24T12:05:24Z) - I$^2$SB: Image-to-Image Schr\"odinger Bridge [87.43524087956457]
Image-to-Image Schr"odinger Bridge (I$2$SB) is a new class of conditional diffusion models.
I$2$SB directly learns the nonlinear diffusion processes between two given distributions.
We show that I$2$SB surpasses standard conditional diffusion models with more interpretable generative processes.
arXiv Detail & Related papers (2023-02-12T08:35:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.