Memento No More: Coaching AI Agents to Master Multiple Tasks via Hints Internalization
- URL: http://arxiv.org/abs/2502.01562v1
- Date: Mon, 03 Feb 2025 17:45:46 GMT
- Title: Memento No More: Coaching AI Agents to Master Multiple Tasks via Hints Internalization
- Authors: Minttu Alakuijala, Ya Gao, Georgy Ananov, Samuel Kaski, Pekka Marttinen, Alexander Ilin, Harri Valpola,
- Abstract summary: We propose a novel method to train AI agents to incorporate knowledge and skills for multiple tasks without the need for cumbersome note systems or prior high-quality demonstration data.
Our approach employs an iterative process where the agent collects new experiences, receives corrective feedback from humans in the form of hints, and integrates this feedback into its weights.
We demonstrate the efficacy of our approach by implementing it in a Llama-3-based agent which, after only a few rounds of feedback, outperforms advanced models GPT-4o and DeepSeek-V3 in a taskset.
- Score: 56.674356045200696
- License:
- Abstract: As the general capabilities of artificial intelligence (AI) agents continue to evolve, their ability to learn to master multiple complex tasks through experience remains a key challenge. Current LLM agents, particularly those based on proprietary language models, typically rely on prompts to incorporate knowledge about the target tasks. This approach does not allow the agent to internalize this information and instead relies on ever-expanding prompts to sustain its functionality in diverse scenarios. This resembles a system of notes used by a person affected by anterograde amnesia, the inability to form new memories. In this paper, we propose a novel method to train AI agents to incorporate knowledge and skills for multiple tasks without the need for either cumbersome note systems or prior high-quality demonstration data. Our approach employs an iterative process where the agent collects new experiences, receives corrective feedback from humans in the form of hints, and integrates this feedback into its weights via a context distillation training procedure. We demonstrate the efficacy of our approach by implementing it in a Llama-3-based agent which, after only a few rounds of feedback, outperforms advanced models GPT-4o and DeepSeek-V3 in a taskset requiring correct sequencing of information retrieval, tool use, and question answering.
Related papers
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [73.34893326181046]
Large language models (LLMs) usually rely on retrieval-augmented generation to exploit knowledge materials in an instant manner.
We propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases.
Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently.
arXiv Detail & Related papers (2024-11-22T08:21:03Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - Improving Knowledge Extraction from LLMs for Task Learning through Agent
Analysis [4.055489363682198]
Large language models (LLMs) offer significant promise as a knowledge source for task learning.
Prompt engineering has been shown to be effective for eliciting knowledge from an LLM, but alone it is insufficient for acquiring relevant, situationally grounded knowledge for an embodied agent learning novel tasks.
We describe a cognitive-agent approach, STARS, that extends and complements prompt engineering, mitigating its limitations and thus enabling an agent to acquire new task knowledge matched to its native language capabilities, embodiment, environment, and user preferences.
arXiv Detail & Related papers (2023-06-11T20:50:14Z) - Transferring Procedural Knowledge across Commonsense Tasks [17.929737518694616]
We study the ability of AI models to transfer procedural knowledge to novel narrative tasks in a transparent manner.
We design LEAP: a comprehensive framework that integrates state-of-the-art modeling architectures, training regimes, and augmentation strategies.
Our experiments with in- and out-of-domain tasks reveal insights into the interplay of different architectures, training regimes, and augmentation strategies.
arXiv Detail & Related papers (2023-04-26T23:24:50Z) - Retrieval-Augmented Reinforcement Learning [63.32076191982944]
We train a network to map a dataset of past experiences to optimal behavior.
The retrieval process is trained to retrieve information from the dataset that may be useful in the current context.
We show that retrieval-augmented R2D2 learns significantly faster than the baseline R2D2 agent and achieves higher scores.
arXiv Detail & Related papers (2022-02-17T02:44:05Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
We present an off-policy, interactive reinforcement learning algorithm that capitalizes on the strengths of both feedback and off-policy learning.
We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods.
arXiv Detail & Related papers (2021-06-09T14:10:50Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - A Proposal for Intelligent Agents with Episodic Memory [0.9236074230806579]
We argue that an agent would benefit from an episodic memory.
This memory encodes the agent's experience in such a way that the agent can relive the experience.
We propose an architecture combining ANNs and standard Computer Science techniques for supporting storage and retrieval of episodic memories.
arXiv Detail & Related papers (2020-05-07T00:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.