MakeAnything: Harnessing Diffusion Transformers for Multi-Domain Procedural Sequence Generation
- URL: http://arxiv.org/abs/2502.01572v2
- Date: Wed, 05 Feb 2025 02:44:42 GMT
- Title: MakeAnything: Harnessing Diffusion Transformers for Multi-Domain Procedural Sequence Generation
- Authors: Yiren Song, Cheng Liu, Mike Zheng Shou,
- Abstract summary: MakeAnything is a framework based on the diffusion transformer (DIT), which leverages fine-tuning to activate the in-context capabilities of DIT for generating consistent procedural sequences.
We also introduce asymmetric low-rank adaptation (LoRA) for image generation, which generalization and task-specific performance by freezing parameters while adaptively tuning decoder layers.
- Score: 20.96801850521772
- License:
- Abstract: A hallmark of human intelligence is the ability to create complex artifacts through structured multi-step processes. Generating procedural tutorials with AI is a longstanding but challenging goal, facing three key obstacles: (1) scarcity of multi-task procedural datasets, (2) maintaining logical continuity and visual consistency between steps, and (3) generalizing across multiple domains. To address these challenges, we propose a multi-domain dataset covering 21 tasks with over 24,000 procedural sequences. Building upon this foundation, we introduce MakeAnything, a framework based on the diffusion transformer (DIT), which leverages fine-tuning to activate the in-context capabilities of DIT for generating consistent procedural sequences. We introduce asymmetric low-rank adaptation (LoRA) for image generation, which balances generalization capabilities and task-specific performance by freezing encoder parameters while adaptively tuning decoder layers. Additionally, our ReCraft model enables image-to-process generation through spatiotemporal consistency constraints, allowing static images to be decomposed into plausible creation sequences. Extensive experiments demonstrate that MakeAnything surpasses existing methods, setting new performance benchmarks for procedural generation tasks.
Related papers
- Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning [59.001091197106085]
Multi-Task Learning (MTL) for Vision Transformer aims at enhancing the model capability by tackling multiple tasks simultaneously.
Most recent works have predominantly focused on designing Mixture-of-Experts (MoE) structures and in tegrating Low-Rank Adaptation (LoRA) to efficiently perform multi-task learning.
We propose a novel approach dubbed Efficient Multi-Task Learning (EMTAL) by transforming a pre-trained Vision Transformer into an efficient multi-task learner.
arXiv Detail & Related papers (2025-01-12T17:41:23Z) - OminiControl: Minimal and Universal Control for Diffusion Transformer [68.3243031301164]
OminiControl is a framework that integrates image conditions into pre-trained Diffusion Transformer (DiT) models.
At its core, OminiControl leverages a parameter reuse mechanism, enabling the DiT to encode image conditions using itself as a powerful backbone.
OminiControl addresses a wide range of image conditioning tasks in a unified manner, including subject-driven generation and spatially-aligned conditions.
arXiv Detail & Related papers (2024-11-22T17:55:15Z) - Task Indicating Transformer for Task-conditional Dense Predictions [16.92067246179703]
We introduce a novel task-conditional framework called Task Indicating Transformer (TIT) to tackle this challenge.
Our approach designs a Mix Task Adapter module within the transformer block, which incorporates a Task Indicating Matrix through matrix decomposition.
We also propose a Task Gate Decoder module that harnesses a Task Indicating Vector and gating mechanism to facilitate adaptive multi-scale feature refinement.
arXiv Detail & Related papers (2024-03-01T07:06:57Z) - Consolidating Attention Features for Multi-view Image Editing [126.19731971010475]
We focus on spatial control-based geometric manipulations and introduce a method to consolidate the editing process across various views.
We introduce QNeRF, a neural radiance field trained on the internal query features of the edited images.
We refine the process through a progressive, iterative method that better consolidates queries across the diffusion timesteps.
arXiv Detail & Related papers (2024-02-22T18:50:18Z) - Mutual Information-driven Triple Interaction Network for Efficient Image
Dehazing [54.168567276280505]
We propose a novel Mutual Information-driven Triple interaction Network (MITNet) for image dehazing.
The first stage, named amplitude-guided haze removal, aims to recover the amplitude spectrum of the hazy images for haze removal.
The second stage, named phase-guided structure refined, devotes to learning the transformation and refinement of the phase spectrum.
arXiv Detail & Related papers (2023-08-14T08:23:58Z) - InvPT++: Inverted Pyramid Multi-Task Transformer for Visual Scene
Understanding [11.608682595506354]
Multi-task scene understanding aims to design models that can simultaneously predict several scene understanding tasks with one versatile model.
Previous studies typically process multi-task features in a more local way, and thus cannot effectively learn spatially global and cross-task interactions.
We propose an Inverted Pyramid multi-task Transformer, capable of modeling cross-task interaction among spatial features of different tasks in a global context.
arXiv Detail & Related papers (2023-06-08T00:28:22Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
Recent vision transformers along with self-attention have achieved promising results on various computer vision tasks.
We introduce an effective hybrid architecture for super-resolution (SR) tasks, which leverages local features from CNNs and long-range dependencies captured by transformers.
Our proposed method achieves state-of-the-art SR results on numerous benchmark datasets.
arXiv Detail & Related papers (2022-03-15T06:52:25Z) - IMAGINE: Image Synthesis by Image-Guided Model Inversion [79.4691654458141]
We introduce an inversion based method, denoted as IMAge-Guided model INvErsion (IMAGINE), to generate high-quality and diverse images.
We leverage the knowledge of image semantics from a pre-trained classifier to achieve plausible generations.
IMAGINE enables the synthesis procedure to simultaneously 1) enforce semantic specificity constraints during the synthesis, 2) produce realistic images without generator training, and 3) give users intuitive control over the generation process.
arXiv Detail & Related papers (2021-04-13T02:00:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.