SubTrack++ : Gradient Subspace Tracking for Scalable LLM Training
- URL: http://arxiv.org/abs/2502.01586v2
- Date: Tue, 03 Jun 2025 11:12:49 GMT
- Title: SubTrack++ : Gradient Subspace Tracking for Scalable LLM Training
- Authors: Sahar Rajabi, Nayeema Nonta, Sirisha Rambhatla,
- Abstract summary: Training large language models (LLMs) is highly resource-intensive due to their massive number of parameters and the overhead of states.<n>We propose SubTrack++ that leverages Grassmannian gradient subspace tracking combined with projection-awares.<n>We demonstrate SOTA convergence by exploiting Grassmannian geometry and lowest evaluation loss.
- Score: 6.057289837472806
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Training large language models (LLMs) is highly resource-intensive due to their massive number of parameters and the overhead of optimizer states. While recent work has aimed to reduce memory consumption, such efforts often entail trade-offs among memory efficiency, training time, and model performance. Yet, true democratization of LLMs requires simultaneous progress across all three dimensions. To this end, we propose SubTrack++ that leverages Grassmannian gradient subspace tracking combined with projection-aware optimizers, enabling Adam's internal statistics to adapt to changes in the optimization subspace. Additionally, employing recovery scaling, a technique that restores information lost through low-rank projections, further enhances model performance. Our method demonstrates SOTA convergence by exploiting Grassmannian geometry and achieves lowest evaluation loss, outperforming the current SOTA while reducing pretraining wall time by 43% and maintaining the memory footprint on a 1B-parameter Llama model.
Related papers
- Large Language Model Enhanced Particle Swarm Optimization for Hyperparameter Tuning for Deep Learning Models [2.3949320404005436]
Particle Swarm Optimization and Large Language Models (LLMs) have been individually applied in optimization and deep learning.<n>Our work addresses this gap by integrating LLMs into PSO to reduce model evaluations and improve convergence.<n>Our method speeds up search space exploration by substituting underperforming particle placements with best suggestions.
arXiv Detail & Related papers (2025-04-19T00:54:59Z) - TeZO: Empowering the Low-Rankness on the Temporal Dimension in the Zeroth-Order Optimization for Fine-tuning LLMs [58.19080159470868]
We propose a novel low-rank ZO estimator, TeZO, which captures the low-rankness across both the model and temporal dimension.
Specifically, we represent ZO perturbations along the temporal dimension as a 3D tensor and employ Canonical Polyadic Decomposition (CPD) to extract each low-rank 2D matrix.
arXiv Detail & Related papers (2025-01-31T11:34:03Z) - SPAM: Spike-Aware Adam with Momentum Reset for Stable LLM Training [60.9776082805359]
Large Language Models (LLMs) have demonstrated exceptional performance across diverse tasks, yet their training remains highly resource-intensive and susceptible to training instability.<n>This paper presents a comprehensive investigation into gradient spikes observed during LLM training, revealing their prevalence across multiple architectures and datasets.<n>We propose Spike-Aware Adam with Momentum Reset, a novel designed to counteract gradient spikes through momentum reset and spike-aware clipping.
arXiv Detail & Related papers (2025-01-12T15:21:22Z) - GaLore$+$: Boosting Low-Rank Adaptation for LLMs with Cross-Head Projection [17.33732087380253]
We propose GaLore$+$, which uses cross-head low-rank projection to reduce the substantial time consumption in estimating low-rank projections for multi-head attention.<n>Our experiments demonstrate that GaLore$+$ delivers superior performance while achieving approximately $4times$ fine-tuning speed compared to vanilla GaLore.
arXiv Detail & Related papers (2024-12-15T12:28:13Z) - APOLLO: SGD-like Memory, AdamW-level Performance [61.53444035835778]
Large language models (LLMs) are notoriously memory-intensive during training.
Various memory-efficient Scals have been proposed to reduce memory usage.
They face critical challenges: (i) costly SVD operations; (ii) significant performance trade-offs compared to AdamW; and (iii) still substantial memory overhead to maintain competitive performance.
arXiv Detail & Related papers (2024-12-06T18:55:34Z) - COAP: Memory-Efficient Training with Correlation-Aware Gradient Projection [11.655821671462427]
We present COAP, a memory-efficient method that minimizes computational overhead while maintaining training performance.<n>For LLaMA-1B, it reduces memory by 61% with only 2% additional time cost, achieving the same PPL as AdamW.<n>With 8-bit quantization, COAP cuts memory by 81% and 4x speedup over GaLore for LLaVA-v1.5-7B fine-tuning, while delivering higher accuracy.
arXiv Detail & Related papers (2024-11-26T03:50:52Z) - AdaRankGrad: Adaptive Gradient-Rank and Moments for Memory-Efficient LLMs Training and Fine-Tuning [9.51289606759621]
Training and fine-tuning large language models (LLMs) come with challenges related to memory and computational requirements.<n>Various techniques have been developed to tackle these challenges, such as low-rank adaptation (LoRA)<n>We introduce a new method inspired by a phenomenon we formally prove: as training progresses, the rank of the estimated gradient gradually decreases.
arXiv Detail & Related papers (2024-10-23T13:53:26Z) - Natural GaLore: Accelerating GaLore for memory-efficient LLM Training and Fine-tuning [1.3597551064547502]
GaLore allows full-supervised learning while being more memory-efficient.
This work introduces Natural GaLore, which efficiently applies the inverse Empirical Fisher Information Matrix to low-rank gradients.
arXiv Detail & Related papers (2024-10-21T14:05:06Z) - Zeroth-Order Fine-Tuning of LLMs in Random Subspaces [63.10833446782114]
As language models grow in size, memory demands for backpropagation increase.<n>Zeroth-order (ZO) optimization methods offer a memory-efficient alternative.<n>In this paper, we propose Subspace Zero-order optimization to address the challenges posed by posed by high dimensionality perturbations.
arXiv Detail & Related papers (2024-10-11T17:01:43Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - Q-GaLore: Quantized GaLore with INT4 Projection and Layer-Adaptive Low-Rank Gradients [86.40635601953446]
We introduce Q-Galore, a novel approach that substantially reduces memory usage by combining quantization and low-rank projection.
We demonstrate that Q-Galore achieves highly competitive performance with exceptional memory efficiency.
arXiv Detail & Related papers (2024-07-11T08:42:58Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - BlockLLM: Memory-Efficient Adaptation of LLMs by Selecting and Optimizing the Right Coordinate Blocks [19.007090250576585]
BlockLLM is an approach inspired by block coordinate descent.<n>It achieves state-of-the-art performance in both finetuning and pretraining tasks.
arXiv Detail & Related papers (2024-06-25T05:45:12Z) - GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection [133.45193150403537]
Training Large Language Models (LLMs) presents significant memory challenges due to the growing size of weights and GPU states.
In this work, we propose Gradient Low-Rank Projection (GaLore) as a memory-efficient training strategy.
Our 8-bit GaLore further reduces memory by up to 82.5% and total training memory by 63.3%, compared to a BF16 baseline.
arXiv Detail & Related papers (2024-03-06T07:29:57Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
We introduce Dynamic Sparse No Training (DSnoT), a training-free fine-tuning approach to fine-tune large language models (LLMs)
Inspired by the Dynamic Sparse Training, DSnoT minimizes the reconstruction error between the dense and sparse LLMs.
Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs.
arXiv Detail & Related papers (2023-10-13T07:38:52Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
Spiking Neural Networks (SNNs) are promising energy-efficient models for neuromorphic computing.
We propose the Spatial Learning Through Time (SLTT) method that can achieve high performance while greatly improving training efficiency.
Our method achieves state-of-the-art accuracy on ImageNet, while the memory cost and training time are reduced by more than 70% and 50%, respectively, compared with BPTT.
arXiv Detail & Related papers (2023-02-28T05:01:01Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.