Improving Rule-based Reasoning in LLMs using Neurosymbolic Representations
- URL: http://arxiv.org/abs/2502.01657v3
- Date: Wed, 28 May 2025 11:56:33 GMT
- Title: Improving Rule-based Reasoning in LLMs using Neurosymbolic Representations
- Authors: Varun Dhanraj, Chris Eliasmith,
- Abstract summary: Large language models (LLMs) continue to face challenges in reliably solving reasoning tasks.<n>This paper introduces a novel neurosymbolic method that improves LLM reasoning by encoding hidden states into neurosymbolic vectors.
- Score: 3.5604294978773265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) continue to face challenges in reliably solving reasoning tasks, particularly those that require precise rule following, as often found in mathematical reasoning. This paper introduces a novel neurosymbolic method that improves LLM reasoning by encoding hidden states into neurosymbolic vectors, enabling problem-solving within a neurosymbolic vector space. The results are decoded and merged with the original hidden state, significantly boosting the model's performance on numerical reasoning tasks. By offloading computation through neurosymbolic representations, this method enhances efficiency, reliability, and interpretability. Experimental results demonstrate an average of 88.6% lower cross-entropy loss and 15.4 times more problems correctly solved on a suite of mathematical reasoning tasks compared to chain-of-thought prompting and supervised fine-tuning (LoRA), without degrading performance on other tasks. We make our code available at: https://github.com/vdhanraj/Neurosymbolic-LLM.
Related papers
- Think before You Simulate: Symbolic Reasoning to Orchestrate Neural Computation for Counterfactual Question Answering [9.875621856950408]
This paper introduces a method to enhance a neuro-symbolic model for counterfactual reasoning.<n>We define the notion of a causal graph to represent causal relations.<n>We validate the effectiveness of our approach on two benchmarks.
arXiv Detail & Related papers (2025-06-12T14:37:11Z) - Chain-of-Code Collapse: Reasoning Failures in LLMs via Adversarial Prompting in Code Generation [0.3495246564946556]
Large Language Models (LLMs) have achieved remarkable success in tasks requiring complex reasoning.<n>Do these models truly reason, or do they merely exploit shallow statistical patterns?<n>We introduce Chain-of-Code Collapse, where we investigate the robustness of reasoning LLMs by introducing a suite of semantically faithful yet adversarially structured prompt perturbations.
arXiv Detail & Related papers (2025-06-08T02:43:46Z) - Enhancing Logical Reasoning in Language Models via Symbolically-Guided Monte Carlo Process Supervision [38.592071445554836]
Large language models (LLMs) have shown promising performance in mathematical and logical reasoning benchmarks.<n>LLMs are susceptible to content variations, demonstrating a lack of robust symbolic abstractions supporting their reasoning process.<n>Existing approaches fail to effectively leverage symbolic representations due to the challenges involved in developing reliable and scalable verification mechanisms.
arXiv Detail & Related papers (2025-05-26T18:06:39Z) - Neuro Symbolic Knowledge Reasoning for Procedural Video Question Answering [26.013577822475856]
This paper introduces a new video question-answering dataset that challenges models to leverage procedural knowledge for complex reasoning.
It requires recognizing visual entities, generating hypotheses, and performing contextual, causal, and counterfactual reasoning.
arXiv Detail & Related papers (2025-03-19T07:49:14Z) - Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching [60.04718679054704]
Chain-of-Thought prompting elicits step-by-step problem solving, but often at the cost of excessive verbosity in intermediate outputs.<n>We propose Sketch-of-Thought (SoT), a prompting framework that integrates cognitively inspired reasoning paradigms with linguistic constraints.<n>SoT achieves token reductions of up to 78% with minimal accuracy loss across 15 reasoning datasets.
arXiv Detail & Related papers (2025-03-07T06:57:17Z) - On Scaling Neurosymbolic Programming through Guided Logical Inference [1.124958340749622]
We propose a new approach centered around an exact algorithmNL, that enables bypassing the computation of the logical provenance.
We show that this approach can be adapted for approximate reasoning with $epsilon$ or $(epsilon, delta)$ guarantees, called ApproxDPNL.
arXiv Detail & Related papers (2025-01-30T08:49:25Z) - Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data [53.433309883370974]
This work explores the potential and limitations of using graph-based synthetic reasoning data as training signals to enhance Large Language Models' reasoning capabilities.<n>Our experiments, conducted on two established natural language reasoning tasks, demonstrate that supervised fine-tuning with synthetic graph-based reasoning data effectively enhances LLMs' reasoning performance without compromising their effectiveness on other standard evaluation benchmarks.
arXiv Detail & Related papers (2024-09-19T03:39:09Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
Large language models (LLMs) have demonstrated remarkable potential across numerous applications.
In this work, we delve into uncovering a specific mechanism by which LLMs execute calculations.
We investigate the potential benefits of selectively fine-tuning these essential heads/MLPs to boost the LLMs' computational performance.
arXiv Detail & Related papers (2024-09-03T07:01:46Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
A potential solution to this issue is Neuro-Symbolic Integration (NeSy), where neural approaches are combined with symbolic reasoning.
Most of these methods exploit a neural network to map perceptions to symbols and a logical reasoner to predict the output of the downstream task.
They suffer from several issues, including slow convergence, learning difficulties with complex perception tasks, and convergence to local minima.
This paper proposes a simple yet effective method to ameliorate these problems.
arXiv Detail & Related papers (2024-02-21T15:51:01Z) - A Neuro-Symbolic Approach to Multi-Agent RL for Interpretability and
Probabilistic Decision Making [42.503612515214044]
Multi-agent reinforcement learning (MARL) is well-suited for runtime decision-making in systems where multiple agents coexist and compete for shared resources.
Applying common deep learning-based MARL solutions to real-world problems suffers from issues of interpretability, sample efficiency, partial observability, etc.
We present an event-driven formulation, where decision-making is handled by distributed co-operative MARL agents using neuro-symbolic methods.
arXiv Detail & Related papers (2024-02-21T00:16:08Z) - The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning [54.56905063752427]
Neuro-Symbolic AI (NeSy) holds promise to ensure the safe deployment of AI systems.
Existing pipelines that train the neural and symbolic components sequentially require extensive labelling.
New architecture, NeSyGPT, fine-tunes a vision-language foundation model to extract symbolic features from raw data.
arXiv Detail & Related papers (2024-02-02T20:33:14Z) - Evaluating LLMs' Mathematical and Coding Competency through Ontology-guided Interventions [47.83142414018448]
We focus on two popular reasoning tasks: arithmetic reasoning and code generation.
We introduce (i) a general ontology of perturbations for math and coding questions, (ii) a semi-automatic method to apply these perturbations, and (iii) two datasets.
We show a significant performance drop across all the models against perturbed questions.
arXiv Detail & Related papers (2024-01-17T18:13:07Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
Large language models (LLMs) have revolutionized many areas by achieving state-of-the-art performance on downstream tasks.
Recent efforts have demonstrated that the LLMs are poor at solving sequential decision-making problems.
arXiv Detail & Related papers (2024-01-17T08:22:52Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - LogicMP: A Neuro-symbolic Approach for Encoding First-order Logic Constraints [42.16663204729038]
This paper proposes a novel neural layer, LogicMP, whose layers perform mean-field variational inference over an MLN.
It can be plugged into any off-the-shelf neural network to encode FOLCs while retaining modularity and efficiency.
Empirical results in three kinds of tasks over graphs, images, and text show that LogicMP outperforms advanced competitors in both performance and efficiency.
arXiv Detail & Related papers (2023-09-27T07:52:30Z) - Unlocking Temporal Question Answering for Large Language Models with Tailor-Made Reasoning Logic [84.59255070520673]
Large language models (LLMs) face a challenge when engaging in temporal reasoning.
We propose TempLogic, a novel framework designed specifically for temporal question-answering tasks.
arXiv Detail & Related papers (2023-05-24T10:57:53Z) - Mastering Symbolic Operations: Augmenting Language Models with Compiled
Neural Networks [48.14324895100478]
"Neural architecture" integrates compiled neural networks (CoNNs) into a standard transformer.
CoNNs are neural modules designed to explicitly encode rules through artificially generated attention weights.
Experiments demonstrate superiority of our approach over existing techniques in terms of length generalization, efficiency, and interpretability for symbolic operations.
arXiv Detail & Related papers (2023-04-04T09:50:07Z) - Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks [65.23508422635862]
We propose learning rules with the recently proposed logical neural networks (LNN)
Compared to others, LNNs offer strong connection to classical Boolean logic.
Our experiments on standard benchmarking tasks confirm that LNN rules are highly interpretable.
arXiv Detail & Related papers (2021-12-06T19:38:30Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Neural-Symbolic Solver for Math Word Problems with Auxiliary Tasks [130.70449023574537]
Our NS-r consists of a problem reader to encode problems, a programmer to generate symbolic equations, and a symbolic executor to obtain answers.
Along with target expression supervision, our solver is also optimized via 4 new auxiliary objectives to enforce different symbolic reasoning.
arXiv Detail & Related papers (2021-07-03T13:14:58Z) - Closed Loop Neural-Symbolic Learning via Integrating Neural Perception,
Grammar Parsing, and Symbolic Reasoning [134.77207192945053]
Prior methods learn the neural-symbolic models using reinforcement learning approaches.
We introduce the textbfgrammar model as a textitsymbolic prior to bridge neural perception and symbolic reasoning.
We propose a novel textbfback-search algorithm which mimics the top-down human-like learning procedure to propagate the error.
arXiv Detail & Related papers (2020-06-11T17:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.