Unlocking Efficient Large Inference Models: One-Bit Unrolling Tips the Scales
- URL: http://arxiv.org/abs/2502.01908v2
- Date: Fri, 07 Feb 2025 21:59:30 GMT
- Title: Unlocking Efficient Large Inference Models: One-Bit Unrolling Tips the Scales
- Authors: Arian Eamaz, Farhang Yeganegi, Mojtaba Soltanalian,
- Abstract summary: We introduce a novel approach that leverages one-bit algorithm unrolling, effectively integrating information from the physical world in the model architecture.
Our method achieves a bit-per-link rate significantly lower than the 1.58 bits reported in prior work.
We demonstrate that the proposed one-bit algorithm unrolling scheme can improve both training and test outcomes.
- Score: 13.846014191157405
- License:
- Abstract: Recent advancements in Large Language Model (LLM) compression, such as BitNet and BitNet b1.58, have marked significant strides in reducing the computational demands of LLMs through innovative one-bit quantization techniques. We extend this frontier by looking at Large Inference Models (LIMs) that have become indispensable across various applications. However, their scale and complexity often come at a significant computational cost. We introduce a novel approach that leverages one-bit algorithm unrolling, effectively integrating information from the physical world in the model architecture. Our method achieves a bit-per-link rate significantly lower than the 1.58 bits reported in prior work, thanks to the natural sparsity that emerges in our network architectures. We numerically demonstrate that the proposed one-bit algorithm unrolling scheme can improve both training and test outcomes by effortlessly increasing the number of layers while substantially compressing the network. Additionally, we provide theoretical results on the generalization gap, convergence rate, stability, and sensitivity of our proposed one-bit algorithm unrolling.
Related papers
- MOFHEI: Model Optimizing Framework for Fast and Efficient Homomorphically Encrypted Neural Network Inference [0.8388591755871735]
Homomorphic Encryption (HE) enables us to perform machine learning tasks over encrypted data.
We propose MOFHEI, a framework that optimize the model to make HE-based neural network inference, fast and efficient.
Our framework achieves up to 98% pruning ratio on LeNet, eliminating up to 93% of the required HE operations for performing PI.
arXiv Detail & Related papers (2024-12-10T22:44:54Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - On Model Compression for Neural Networks: Framework, Algorithm, and Convergence Guarantee [21.818773423324235]
This paper focuses on two model compression techniques: low-rank approximation and weight approximation.
In this paper, a holistic framework is proposed for model compression from a novel perspective of non optimization.
arXiv Detail & Related papers (2023-03-13T02:14:42Z) - Algorithm Unrolling for Massive Access via Deep Neural Network with
Theoretical Guarantee [30.86806523281873]
Massive access is a critical design challenge of Internet of Things (IoT) networks.
We consider the grant-free uplink transmission of an IoT network with a multiple-antenna base station (BS) and a large number of single-antenna IoT devices.
We propose a novel algorithm unrolling framework based on the deep neural network to simultaneously achieve low computational complexity and high robustness.
arXiv Detail & Related papers (2021-06-19T05:23:05Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - EQ-Net: A Unified Deep Learning Framework for Log-Likelihood Ratio
Estimation and Quantization [25.484585922608193]
We introduce EQ-Net: the first holistic framework that solves both the tasks of log-likelihood ratio (LLR) estimation and quantization using a data-driven method.
We carry out extensive experimental evaluation and demonstrate that our single architecture achieves state-of-the-art results on both tasks.
arXiv Detail & Related papers (2020-12-23T18:11:30Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
We propose a Fully Quantized image Super-Resolution framework (FQSR) to jointly optimize efficiency and accuracy.
We apply our quantization scheme on multiple mainstream super-resolution architectures, including SRResNet, SRGAN and EDSR.
Our FQSR using low bits quantization can achieve on par performance compared with the full-precision counterparts on five benchmark datasets.
arXiv Detail & Related papers (2020-11-29T03:53:49Z) - Once Quantization-Aware Training: High Performance Extremely Low-bit
Architecture Search [112.05977301976613]
We propose to combine Network Architecture Search methods with quantization to enjoy the merits of the two sides.
We first propose the joint training of architecture and quantization with a shared step size to acquire a large number of quantized models.
Then a bit-inheritance scheme is introduced to transfer the quantized models to the lower bit, which further reduces the time cost and improves the quantization accuracy.
arXiv Detail & Related papers (2020-10-09T03:52:16Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Communication-efficient Variance-reduced Stochastic Gradient Descent [0.0]
We consider the problem of communication efficient distributed optimization.
In particular, we focus on the variance-reduced gradient and propose a novel approach to make it communication-efficient.
Comprehensive theoretical and numerical analyses on real datasets reveal that our algorithm can significantly reduce the communication complexity, by as much as 95%, with almost no noticeable penalty.
arXiv Detail & Related papers (2020-03-10T13:22:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.