Efficient Dynamic Scene Editing via 4D Gaussian-based Static-Dynamic Separation
- URL: http://arxiv.org/abs/2502.02091v1
- Date: Tue, 04 Feb 2025 08:18:49 GMT
- Title: Efficient Dynamic Scene Editing via 4D Gaussian-based Static-Dynamic Separation
- Authors: JooHyun Kwon, Hanbyel Cho, Junmo Kim,
- Abstract summary: Recent 4D dynamic scene editing methods require editing thousands of 2D images used for dynamic scene synthesis.
These methods are not scalable with respect to the temporal dimension of the dynamic scene.
We propose an efficient dynamic scene editing method that is more scalable in terms of temporal dimension.
- Score: 25.047474784265773
- License:
- Abstract: Recent 4D dynamic scene editing methods require editing thousands of 2D images used for dynamic scene synthesis and updating the entire scene with additional training loops, resulting in several hours of processing to edit a single dynamic scene. Therefore, these methods are not scalable with respect to the temporal dimension of the dynamic scene (i.e., the number of timesteps). In this work, we propose an efficient dynamic scene editing method that is more scalable in terms of temporal dimension. To achieve computational efficiency, we leverage a 4D Gaussian representation that models a 4D dynamic scene by combining static 3D Gaussians with a Hexplane-based deformation field, which handles dynamic information. We then perform editing solely on the static 3D Gaussians, which is the minimal but sufficient component required for visual editing. To resolve the misalignment between the edited 3D Gaussians and the deformation field potentially resulting from the editing process, we additionally conducted a refinement stage using a score distillation mechanism. Extensive editing results demonstrate that our method is efficient, reducing editing time by more than half compared to existing methods, while achieving high editing quality that better follows user instructions.
Related papers
- CTRL-D: Controllable Dynamic 3D Scene Editing with Personalized 2D Diffusion [13.744253074367885]
We introduce a novel framework that first fine-tunes the InstructPix2Pix model, followed by a two-stage optimization of the scene.
Our approach enables consistent and precise local edits without the need for tracking desired editing regions.
Compared to state-of-the-art methods, our approach offers more flexible and controllable local scene editing.
arXiv Detail & Related papers (2024-12-02T18:38:51Z) - 3DSceneEditor: Controllable 3D Scene Editing with Gaussian Splatting [31.98493679748211]
We propose 3DSceneEditor, a fully 3D-based paradigm for real-time, precise editing of 3D scenes using Gaussian Splatting.
Unlike conventional methods, 3DSceneEditor operates through a streamlined 3D pipeline, enabling direct manipulation of Gaussians for efficient, high-quality edits.
arXiv Detail & Related papers (2024-12-02T15:03:55Z) - EditRoom: LLM-parameterized Graph Diffusion for Composable 3D Room Layout Editing [114.14164860467227]
We propose Edit-Room, a framework capable of executing a variety of layout edits through natural language commands.
Specifically, EditRoom leverages Large Language Models (LLMs) for command planning and generates target scenes.
We have developed an automatic pipeline to augment existing 3D scene datasets and introduced EditRoom-DB, a large-scale dataset with 83k editing pairs.
arXiv Detail & Related papers (2024-10-03T17:42:24Z) - 3D Gaussian Editing with A Single Image [19.662680524312027]
We introduce a novel single-image-driven 3D scene editing approach based on 3D Gaussian Splatting.
Our method learns to optimize the 3D Gaussians to align with an edited version of the image rendered from a user-specified viewpoint.
Experiments show the effectiveness of our method in handling geometric details, long-range, and non-rigid deformation.
arXiv Detail & Related papers (2024-08-14T13:17:42Z) - Instruct 4D-to-4D: Editing 4D Scenes as Pseudo-3D Scenes Using 2D Diffusion [30.331519274430594]
Instruct 4D-to-4D generates high-quality instruction-guided dynamic scene editing results.
We treat a 4D scene as a pseudo-3D scene, decoupled into two sub-problems: achieving temporal consistency in video editing and applying these edits to the pseudo-3D scene.
We extensively evaluate our approach in various scenes and editing instructions, and demonstrate that it achieves spatially and temporally consistent editing results.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - 3DitScene: Editing Any Scene via Language-guided Disentangled Gaussian Splatting [100.94916668527544]
Existing methods solely focus on either 2D individual object or 3D global scene editing.
We propose 3DitScene, a novel and unified scene editing framework.
It enables seamless editing from 2D to 3D, allowing precise control over scene composition and individual objects.
arXiv Detail & Related papers (2024-05-28T17:59:01Z) - DragGaussian: Enabling Drag-style Manipulation on 3D Gaussian Representation [57.406031264184584]
DragGaussian is a 3D object drag-editing framework based on 3D Gaussian Splatting.
Our contributions include the introduction of a new task, the development of DragGaussian for interactive point-based 3D editing, and comprehensive validation of its effectiveness through qualitative and quantitative experiments.
arXiv Detail & Related papers (2024-05-09T14:34:05Z) - DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing [72.54566271694654]
We consider the problem of editing 3D objects and scenes based on open-ended language instructions.
A common approach to this problem is to use a 2D image generator or editor to guide the 3D editing process.
This process is often inefficient due to the need for iterative updates of costly 3D representations.
arXiv Detail & Related papers (2024-04-29T17:59:30Z) - GaussianEditor: Editing 3D Gaussians Delicately with Text Instructions [90.38892097863814]
We propose a systematic framework, named GaussianEditor, to edit 3D scenes delicately via 3D Gaussians with text instructions.
Our framework can achieve more delicate and precise editing of 3D scenes than previous methods while enjoying much faster training speed.
arXiv Detail & Related papers (2023-11-27T17:58:21Z) - GaussianEditor: Swift and Controllable 3D Editing with Gaussian
Splatting [66.08674785436612]
3D editing plays a crucial role in many areas such as gaming and virtual reality.
Traditional 3D editing methods, which rely on representations like meshes and point clouds, often fall short in realistically depicting complex scenes.
Our paper presents GaussianEditor, an innovative and efficient 3D editing algorithm based on Gaussian Splatting (GS), a novel 3D representation.
arXiv Detail & Related papers (2023-11-24T14:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.