SurvHive: a package to consistently access multiple survival-analysis packages
- URL: http://arxiv.org/abs/2502.02223v1
- Date: Tue, 04 Feb 2025 11:02:40 GMT
- Title: SurvHive: a package to consistently access multiple survival-analysis packages
- Authors: Giovanni Birolo, Ivan Rossi, Flavio Sartori, Cesare Rollo, Tiziana Sanavia, Piero Fariselli,
- Abstract summary: SurvHive is a Python-based framework designed to unify survival analysis methods within a coherent and interface modeled on scikit-learn.<n>SurvHive integrates classical statistical models with cutting-edge deep learning approaches, including transformer-based architectures and parametric survival models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Survival analysis, a foundational tool for modeling time-to-event data, has seen growing integration with machine learning (ML) approaches to handle the complexities of censored data and time-varying risks. Despite these advances, leveraging state-of-the-art survival models remains a challenge due to the fragmented nature of existing implementations, which lack standardized interfaces and require extensive preprocessing. We introduce SurvHive, a Python-based framework designed to unify survival analysis methods within a coherent and extensible interface modeled on scikit-learn. SurvHive integrates classical statistical models with cutting-edge deep learning approaches, including transformer-based architectures and parametric survival models. Using a consistent API, SurvHive simplifies model training, evaluation, and optimization, significantly reducing the barrier to entry for ML practitioners exploring survival analysis. The package includes enhanced support for hyper-parameter tuning, time-dependent risk evaluation metrics, and cross-validation strategies tailored to censored data. With its extensibility and focus on usability, SurvHive provides a bridge between survival analysis and the broader ML community, facilitating advancements in time-to-event modeling across domains. The SurvHive code and documentation are available freely at https://github.com/compbiomed-unito/survhive.
Related papers
- Continual Learning for VLMs: A Survey and Taxonomy Beyond Forgetting [70.83781268763215]
Vision-language models (VLMs) have achieved impressive performance across diverse multimodal tasks by leveraging large-scale pre-training.<n>VLMs face unique challenges such as cross-modal feature drift, parameter interference due to shared architectures, and zero-shot capability erosion.<n>This survey aims to serve as a comprehensive and diagnostic reference for researchers developing lifelong vision-language systems.
arXiv Detail & Related papers (2025-08-06T09:03:10Z) - SurvUnc: A Meta-Model Based Uncertainty Quantification Framework for Survival Analysis [8.413107141283502]
Survival analysis is fundamental in numerous real-world applications, particularly in high-stakes domains such as healthcare and risk assessment.<n>Despite advances in numerous survival models, quantifying the uncertainty of predictions remains underexplored and challenging.<n>We introduce SurvUnc, a novel meta-model based framework for post-hoc uncertainty quantification for survival models.
arXiv Detail & Related papers (2025-05-20T18:12:20Z) - Self-Consistent Equation-guided Neural Networks for Censored Time-to-Event Data [11.550402345767141]
We propose a novel approach to non-parametric estimation of the conditional survival functions using the generative adversarial networks leveraging self-consistent equations.
The proposed method is model-free and does not require any parametric assumptions on the structure of the conditional survival function.
arXiv Detail & Related papers (2025-03-12T06:24:35Z) - CleanSurvival: Automated data preprocessing for time-to-event models using reinforcement learning [0.0]
Data preprocessing is a critical yet frequently neglected aspect of machine learning.
CleanSurvival is a reinforcement-learning-based solution for optimizing preprocessing pipelines.
It can handle continuous and categorical variables, using Q-learning to select which combination of data imputation, outlier detection and feature extraction techniques achieves optimal performance.
arXiv Detail & Related papers (2025-02-06T10:33:37Z) - Deep End-to-End Survival Analysis with Temporal Consistency [49.77103348208835]
We present a novel Survival Analysis algorithm designed to efficiently handle large-scale longitudinal data.
A central idea in our method is temporal consistency, a hypothesis that past and future outcomes in the data evolve smoothly over time.
Our framework uniquely incorporates temporal consistency into large datasets by providing a stable training signal.
arXiv Detail & Related papers (2024-10-09T11:37:09Z) - Adaptive Transformer Modelling of Density Function for Nonparametric Survival Analysis [11.35395323124404]
Survival analysis holds a crucial role across diverse disciplines, such as economics, engineering and healthcare.
We propose a novel survival regression method capable of producing high-quality unimodal PDFs without any prior distribution assumption.
arXiv Detail & Related papers (2024-09-10T04:29:59Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Multi-modal Data Binding for Survival Analysis Modeling with Incomplete Data and Annotations [19.560652381770243]
We introduce a novel framework that simultaneously handles incomplete data across modalities and censored survival labels.
Our approach employs advanced foundation models to encode individual modalities and align them into a universal representation space.
The proposed method demonstrates outstanding prediction accuracy in two survival analysis tasks on both employed datasets.
arXiv Detail & Related papers (2024-07-25T02:55:39Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - Robust Survival Analysis with Adversarial Regularization [6.001304967469112]
Survival Analysis (SA) models the time until an event occurs.
Recent work shows that Neural Networks (NNs) can capture complex relationships in SA.
We leverage NN verification advances to create algorithms for robust, fully-parametric survival models.
arXiv Detail & Related papers (2023-12-26T12:18:31Z) - Composite Survival Analysis: Learning with Auxiliary Aggregated
Baselines and Survival Scores [0.0]
Survival Analysis (SA) constitutes the default method for time-to-event modeling.
We show how to improve the training and inference of SA models by decoupling their full expression into (1) an aggregated baseline hazard, which captures the overall behavior of a given population, and (2) independently distributed survival scores, which model idiosyncratic probabilistic dynamics of its given members, in a fully parametric setting.
arXiv Detail & Related papers (2023-12-10T11:13:22Z) - Fast-Slow Test-Time Adaptation for Online Vision-and-Language Navigation [67.18144414660681]
We propose a Fast-Slow Test-Time Adaptation (FSTTA) approach for online Vision-and-Language Navigation (VLN)
Our method obtains impressive performance gains on four popular benchmarks.
arXiv Detail & Related papers (2023-11-22T07:47:39Z) - Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer [54.32283739486781]
We present a textbfForgery-aware textbfAdaptive textbfVision textbfTransformer (FA-ViT) under the adaptive learning paradigm.
FA-ViT achieves 93.83% and 78.32% AUC scores on Celeb-DF and DFDC datasets in the cross-dataset evaluation.
arXiv Detail & Related papers (2023-09-20T06:51:11Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - SurvivalGAN: Generating Time-to-Event Data for Survival Analysis [121.84429525403694]
Imbalances in censoring and time horizons cause generative models to experience three new failure modes specific to survival analysis.
We propose SurvivalGAN, a generative model that handles survival data by addressing the imbalance in the censoring and event horizons.
We evaluate this method via extensive experiments on medical datasets.
arXiv Detail & Related papers (2023-02-24T17:03:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.