Rotation-Adaptive Point Cloud Domain Generalization via Intricate Orientation Learning
- URL: http://arxiv.org/abs/2502.02247v1
- Date: Tue, 04 Feb 2025 11:46:32 GMT
- Title: Rotation-Adaptive Point Cloud Domain Generalization via Intricate Orientation Learning
- Authors: Bangzhen Liu, Chenxi Zheng, Xuemiao Xu, Cheng Xu, Huaidong Zhang, Shengfeng He,
- Abstract summary: We propose an innovative rotation-adaptive domain generalization framework for 3D point cloud analysis.
Our approach aims to alleviate orientational shifts by leveraging intricate samples in an iterative learning process.
We employ an orientation-aware contrastive learning framework that incorporates an orientation consistency loss and a margin separation loss.
- Score: 34.424450834358204
- License:
- Abstract: The vulnerability of 3D point cloud analysis to unpredictable rotations poses an open yet challenging problem: orientation-aware 3D domain generalization. Cross-domain robustness and adaptability of 3D representations are crucial but not easily achieved through rotation augmentation. Motivated by the inherent advantages of intricate orientations in enhancing generalizability, we propose an innovative rotation-adaptive domain generalization framework for 3D point cloud analysis. Our approach aims to alleviate orientational shifts by leveraging intricate samples in an iterative learning process. Specifically, we identify the most challenging rotation for each point cloud and construct an intricate orientation set by optimizing intricate orientations. Subsequently, we employ an orientation-aware contrastive learning framework that incorporates an orientation consistency loss and a margin separation loss, enabling effective learning of categorically discriminative and generalizable features with rotation consistency. Extensive experiments and ablations conducted on 3D cross-domain benchmarks firmly establish the state-of-the-art performance of our proposed approach in the context of orientation-aware 3D domain generalization.
Related papers
- Rotation-Invariant Transformer for Point Cloud Matching [42.5714375149213]
We introduce RoITr, a Rotation-Invariant Transformer to cope with the pose variations in the point cloud matching task.
We propose a global transformer with rotation-invariant cross-frame spatial awareness learned by the self-attention mechanism.
RoITr surpasses the existing methods by at least 13 and 5 percentage points in terms of Inlier Ratio and Registration Recall.
arXiv Detail & Related papers (2023-03-14T20:55:27Z) - CRIN: Rotation-Invariant Point Cloud Analysis and Rotation Estimation
via Centrifugal Reference Frame [60.24797081117877]
We propose the CRIN, namely Centrifugal Rotation-Invariant Network.
CRIN directly takes the coordinates of points as input and transforms local points into rotation-invariant representations.
A continuous distribution for 3D rotations based on points is introduced.
arXiv Detail & Related papers (2023-03-06T13:14:10Z) - Category-Level 6D Object Pose Estimation with Flexible Vector-Based
Rotation Representation [51.67545893892129]
We propose a novel 3D graph convolution based pipeline for category-level 6D pose and size estimation from monocular RGB-D images.
We first design an orientation-aware autoencoder with 3D graph convolution for latent feature learning.
Then, to efficiently decode the rotation information from the latent feature, we design a novel flexible vector-based decomposable rotation representation.
arXiv Detail & Related papers (2022-12-09T02:13:43Z) - ART-Point: Improving Rotation Robustness of Point Cloud Classifiers via
Adversarial Rotation [89.47574181669903]
In this study, we show that the rotation robustness of point cloud classifiers can also be acquired via adversarial training.
Specifically, our proposed framework named ART-Point regards the rotation of the point cloud as an attack.
We propose a fast one-step optimization to efficiently reach the final robust model.
arXiv Detail & Related papers (2022-03-08T07:20:16Z) - Adjoint Rigid Transform Network: Task-conditioned Alignment of 3D Shapes [86.2129580231191]
Adjoint Rigid Transform (ART) Network is a neural module which can be integrated with a variety of 3D networks.
ART learns to rotate input shapes to a learned canonical orientation, which is crucial for a lot of tasks.
We will release our code and pre-trained models for further research.
arXiv Detail & Related papers (2021-02-01T20:58:45Z) - Rotation-Invariant Point Convolution With Multiple Equivariant
Alignments [1.0152838128195467]
We show that using rotation-equivariant alignments, it is possible to make any convolutional layer rotation-invariant.
With this core layer, we design rotation-invariant architectures which improve state-of-the-art results in both object classification and semantic segmentation.
arXiv Detail & Related papers (2020-12-07T20:47:46Z) - Rotation-Invariant Local-to-Global Representation Learning for 3D Point
Cloud [42.86112554931754]
We propose a local-to-global representation learning algorithm for 3D point cloud data.
Our model takes advantage of multi-level abstraction based on graph convolutional neural networks.
The proposed algorithm presents the state-of-the-art performance on the rotation-augmented 3D object recognition and segmentation benchmarks.
arXiv Detail & Related papers (2020-10-07T10:30:20Z) - A Rotation-Invariant Framework for Deep Point Cloud Analysis [132.91915346157018]
We introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs.
Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure.
We evaluate our method on multiple point cloud analysis tasks, including shape classification, part segmentation, and shape retrieval.
arXiv Detail & Related papers (2020-03-16T14:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.