Stable Port-Hamiltonian Neural Networks
- URL: http://arxiv.org/abs/2502.02480v1
- Date: Tue, 04 Feb 2025 16:57:02 GMT
- Title: Stable Port-Hamiltonian Neural Networks
- Authors: Fabian J. Roth, Dominik K. Klein, Maximilian Kannapinn, Jan Peters, Oliver Weeger,
- Abstract summary: This article proposes stable port-Hamiltonian neural networks, a machine learning architecture that incorporates the physical biases of energy conservation or dissipation.
Evaluations with illustrative examples and real-world measurement data demonstrate the model's ability to generalize from sparse data.
The model's potential for data-driven surrogate modeling is highlighted in application to multi-physics simulation data.
- Score: 12.888451750172404
- License:
- Abstract: In recent years, nonlinear dynamic system identification using artificial neural networks has garnered attention due to its manifold potential applications in virtually all branches of science and engineering. However, purely data-driven approaches often struggle with extrapolation and may yield physically implausible forecasts. Furthermore, the learned dynamics can exhibit instabilities, making it difficult to apply such models safely and robustly. This article proposes stable port-Hamiltonian neural networks, a machine learning architecture that incorporates the physical biases of energy conservation or dissipation while guaranteeing global Lyapunov stability of the learned dynamics. Evaluations with illustrative examples and real-world measurement data demonstrate the model's ability to generalize from sparse data, outperforming purely data-driven approaches and avoiding instability issues. In addition, the model's potential for data-driven surrogate modeling is highlighted in application to multi-physics simulation data.
Related papers
- Hybrid Adaptive Modeling using Neural Networks Trained with Nonlinear Dynamics Based Features [5.652228574188242]
This paper introduces a novel approach that departs from standard techniques by uncovering information from nonlinear dynamical modeling and embedding it in data-based models.
By explicitly incorporating nonlinear dynamic phenomena through perturbation methods, the predictive capabilities are more realistic and insightful compared to knowledge obtained from brute-force numerical simulations.
arXiv Detail & Related papers (2025-01-21T02:38:28Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.
The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.
Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Knowledge-based Deep Learning for Modeling Chaotic Systems [7.075125892721573]
This paper considers extreme events and their dynamics and proposes models based on deep neural networks, called knowledge-based deep learning (KDL)
Our proposed KDL can learn the complex patterns governing chaotic systems by jointly training on real and simulated data.
We validate our model by assessing it on three real-world benchmark datasets: El Nino sea surface temperature, San Juan Dengue viral infection, and Bjornoya daily precipitation.
arXiv Detail & Related papers (2022-09-09T11:46:25Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Bayesian Physics-Informed Neural Networks for real-world nonlinear
dynamical systems [0.0]
We integrate data, physics, and uncertainties by combining neural networks, physics-informed modeling, and Bayesian inference.
Our study reveals the inherent advantages and disadvantages of Neural Networks, Bayesian Inference, and a combination of both.
We anticipate that the underlying concepts and trends generalize to more complex disease conditions.
arXiv Detail & Related papers (2022-05-12T19:04:31Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
We propose a physics-guided hybrid approach for modeling non-autonomous systems under control.
This is extended by a recurrent neural network and trained using a sophisticated multi-objective strategy.
Experiments conducted on real data reveal substantial accuracy improvements by our approach compared to a physics-based model.
arXiv Detail & Related papers (2022-04-27T14:33:02Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Physics-aware, probabilistic model order reduction with guaranteed
stability [0.0]
We propose a generative framework for learning an effective, lower-dimensional, coarse-grained dynamical model.
We demonstrate its efficacy and accuracy in multiscale physical systems of particle dynamics.
arXiv Detail & Related papers (2021-01-14T19:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.