TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems
- URL: http://arxiv.org/abs/2502.02527v1
- Date: Tue, 04 Feb 2025 17:49:44 GMT
- Title: TabPFN Unleashed: A Scalable and Effective Solution to Tabular Classification Problems
- Authors: Si-Yang Liu, Han-Jia Ye,
- Abstract summary: TabPFN has emerged as a promising in-context learning model.
It is capable of directly predicting the labels of test samples given labeled training examples.
It has demonstrated competitive performance, particularly on small-scale classification tasks.
- Score: 30.597696775364447
- License:
- Abstract: TabPFN has emerged as a promising in-context learning model for tabular data, capable of directly predicting the labels of test samples given labeled training examples. It has demonstrated competitive performance, particularly on small-scale classification tasks. However, despite its effectiveness, TabPFN still requires further refinement in several areas, including handling high-dimensional features, aligning with downstream datasets, and scaling to larger datasets. In this paper, we revisit existing variants of TabPFN and observe that most approaches focus either on reducing bias or variance, often neglecting the need to address the other side, while also increasing inference overhead. To fill this gap, we propose Beta (Bagging and Encoder-based Fine-tuning for TabPFN Adaptation), a novel and effective method designed to minimize both bias and variance. To reduce bias, we introduce a lightweight encoder to better align downstream tasks with the pre-trained TabPFN. By increasing the number of encoders in a lightweight manner, Beta mitigate variance, thereby further improving the model's performance. Additionally, bootstrapped sampling is employed to further reduce the impact of data perturbations on the model, all while maintaining computational efficiency during inference. Our approach enhances TabPFN's ability to handle high-dimensional data and scale to larger datasets. Experimental results on over 200 benchmark classification datasets demonstrate that Beta either outperforms or matches state-of-the-art methods.
Related papers
- Zero-shot Meta-learning for Tabular Prediction Tasks with Adversarially Pre-trained Transformer [2.1677183904102257]
We present an Adversarially Pre-trained Transformer (APT) that is able to perform zero-shot meta-learning on tabular prediction tasks without pre-training on any real-world dataset.
APT is pre-trained with adversarial synthetic data agents, who deliberately challenge the model with different synthetic datasets.
We show that our framework matches state-of-the-art performance on small classification tasks without filtering on dataset characteristics.
arXiv Detail & Related papers (2025-02-06T23:58:11Z) - TabDiff: a Mixed-type Diffusion Model for Tabular Data Generation [91.50296404732902]
We introduce TabDiff, a joint diffusion framework that models all mixed-type distributions of tabular data in one model.
Our key innovation is the development of a joint continuous-time diffusion process for numerical and categorical data.
TabDiff achieves superior average performance over existing competitive baselines, with up to $22.5%$ improvement over the state-of-the-art model on pair-wise column correlation estimations.
arXiv Detail & Related papers (2024-10-27T22:58:47Z) - Tokenize features, enhancing tables: the FT-TABPFN model for tabular classification [13.481699494376809]
FT-TabPFN is an enhanced version of TabPFN that includes a novel Feature Tokenization layer to better handle classification features.
Our full source code is available for community use and development.
arXiv Detail & Related papers (2024-06-11T02:13:46Z) - Interpretable Machine Learning for TabPFN [5.012821694203072]
The TabPFN model is able to achieve state-of-the-art performance on a variety of classification tasks.
By taking advantage of the unique properties of the model, our adaptations allow for more efficient computations.
arXiv Detail & Related papers (2024-03-16T13:35:15Z) - TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks [90.00817095558094]
Prior-data fitted networks (PFNs) make use of pretraining and in-context learning to achieve strong performance on new tasks in a single forward pass.
We introduce TuneTables, a parameter-efficient fine-tuning strategy for PFNs that compresses large datasets into a smaller learned context.
We show that TuneTables can be used as an interpretability tool and can even be used to mitigate biases by optimizing a fairness objective.
arXiv Detail & Related papers (2024-02-17T00:02:23Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference.
One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels.
This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise.
We propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation.
arXiv Detail & Related papers (2024-01-15T03:33:39Z) - Active Finetuning: Exploiting Annotation Budget in the
Pretraining-Finetuning Paradigm [132.9949120482274]
This paper focuses on the selection of samples for annotation in the pretraining-finetuning paradigm.
We propose a novel method called ActiveFT for active finetuning task to select a subset of data distributing similarly with the entire unlabeled pool.
Extensive experiments show the leading performance and high efficiency of ActiveFT superior to baselines on both image classification and semantic segmentation.
arXiv Detail & Related papers (2023-03-25T07:17:03Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z) - Deep Active Learning for Biased Datasets via Fisher Kernel
Self-Supervision [5.352699766206807]
Active learning (AL) aims to minimize labeling efforts for data-demanding deep neural networks (DNNs)
We propose a low-complexity method for feature density matching using self-supervised Fisher kernel (FK)
Our method outperforms state-of-the-art methods on MNIST, SVHN, and ImageNet classification while requiring only 1/10th of processing.
arXiv Detail & Related papers (2020-03-01T03:56:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.