Anytime Incremental $ρ$POMDP Planning in Continuous Spaces
- URL: http://arxiv.org/abs/2502.02549v1
- Date: Tue, 04 Feb 2025 18:19:40 GMT
- Title: Anytime Incremental $ρ$POMDP Planning in Continuous Spaces
- Authors: Ron Benchetrit, Idan Lev-Yehudi, Andrey Zhitnikov, Vadim Indelman,
- Abstract summary: We present an anytime solver that dynamically refines belief representations, with formal guarantees of improvement over time.
We demonstrate its effectiveness for common entropy estimators, reducing computational cost by orders of magnitude.
Experimental results show that $rho$POMCPOW outperforms state-of-the-art solvers in both efficiency and solution quality.
- Score: 5.767643556541711
- License:
- Abstract: Partially Observable Markov Decision Processes (POMDPs) provide a robust framework for decision-making under uncertainty in applications such as autonomous driving and robotic exploration. Their extension, $\rho$POMDPs, introduces belief-dependent rewards, enabling explicit reasoning about uncertainty. Existing online $\rho$POMDP solvers for continuous spaces rely on fixed belief representations, limiting adaptability and refinement - critical for tasks such as information-gathering. We present $\rho$POMCPOW, an anytime solver that dynamically refines belief representations, with formal guarantees of improvement over time. To mitigate the high computational cost of updating belief-dependent rewards, we propose a novel incremental computation approach. We demonstrate its effectiveness for common entropy estimators, reducing computational cost by orders of magnitude. Experimental results show that $\rho$POMCPOW outperforms state-of-the-art solvers in both efficiency and solution quality.
Related papers
- Provably Efficient RL under Episode-Wise Safety in Constrained MDPs with Linear Function Approximation [24.299769025346368]
We study the reinforcement learning problem in a constrained decision process (CMDP)
We propose an RL algorithm for linear CMDPs that achieves $tildemathcalO(sqrtK)$ regret with an episode-wise zero-violation guarantee.
Our results significantly improve upon recent linear CMDP algorithms, which either violate the constraint or incur exponential computational costs.
arXiv Detail & Related papers (2025-02-14T13:07:25Z) - Automatic Double Reinforcement Learning in Semiparametric Markov Decision Processes with Applications to Long-Term Causal Inference [33.14076284663493]
We study efficient inference on linear functionals of the $Q$-function in time-invariant Markov Decision Process (MDPs)
These restrictions can reduce the overlap requirement and lower the efficiency bound, yielding more precise estimates.
As a special case, we propose a novel adaptive debiased plug-in estimator that uses isotonic-adaptive fitted $Q$-iteration - a new calibration algorithm for MDPs.
arXiv Detail & Related papers (2025-01-12T20:35:28Z) - On Reward Structures of Markov Decision Processes [4.13365552362244]
A Markov decision process can be parameterized by a transition kernel and a reward function.
We study various kinds of "costs" associated with reinforcement learning inspired by the demands in robotic applications.
We develop a novel estimator with an instance-specific error bound to $tildeO(sqrtfractau_sn)$ for estimating a single state value.
arXiv Detail & Related papers (2023-08-28T22:29:16Z) - Twice Regularized Markov Decision Processes: The Equivalence between
Robustness and Regularization [64.60253456266872]
Markov decision processes (MDPs) aim to handle changing or partially known system dynamics.
Regularized MDPs show more stability in policy learning without impairing time complexity.
Bellman operators enable us to derive planning and learning schemes with convergence and generalization guarantees.
arXiv Detail & Related papers (2023-03-12T13:03:28Z) - Provably Efficient Model-Free Algorithms for Non-stationary CMDPs [10.930095238723327]
We study model-free reinforcement learning algorithms in episodic non-stationary constrained Markov Decision Processes.
In the non-stationary environment, reward, utility functions, and transition kernels can vary arbitrarily over time as long as the cumulative variations do not exceed certain variation budgets.
We propose the first model-free, simulator-free RL algorithms with sublinear regret and zero constraint violation for non-stationary CMDPs.
arXiv Detail & Related papers (2023-03-10T06:33:38Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy.
Many algorithms for IRL have an inherently nested structure.
We develop a novel single-loop algorithm for IRL that does not compromise reward estimation accuracy.
arXiv Detail & Related papers (2022-10-04T17:13:45Z) - Reinforcement Learning with a Terminator [80.34572413850186]
We learn the parameters of the TerMDP and leverage the structure of the estimation problem to provide state-wise confidence bounds.
We use these to construct a provably-efficient algorithm, which accounts for termination, and bound its regret.
arXiv Detail & Related papers (2022-05-30T18:40:28Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Exploiting Submodular Value Functions For Scaling Up Active Perception [60.81276437097671]
In active perception tasks, agent aims to select sensory actions that reduce uncertainty about one or more hidden variables.
Partially observable Markov decision processes (POMDPs) provide a natural model for such problems.
As the number of sensors available to the agent grows, the computational cost of POMDP planning grows exponentially.
arXiv Detail & Related papers (2020-09-21T09:11:36Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.