COCONut-PanCap: Joint Panoptic Segmentation and Grounded Captions for Fine-Grained Understanding and Generation
- URL: http://arxiv.org/abs/2502.02589v1
- Date: Tue, 04 Feb 2025 18:59:46 GMT
- Title: COCONut-PanCap: Joint Panoptic Segmentation and Grounded Captions for Fine-Grained Understanding and Generation
- Authors: Xueqing Deng, Qihang Yu, Ali Athar, Chenglin Yang, Linjie Yang, Xiaojie Jin, Xiaohui Shen, Liang-Chieh Chen,
- Abstract summary: COCONut-PanCap dataset incorporates fine-grained, region-level captions grounded in panoptic segmentation masks.
COCONut-PanCap supports improved training of vision-language models for image understanding and generative models for text-to-image tasks.
- Score: 38.09277249986138
- License:
- Abstract: This paper introduces the COCONut-PanCap dataset, created to enhance panoptic segmentation and grounded image captioning. Building upon the COCO dataset with advanced COCONut panoptic masks, this dataset aims to overcome limitations in existing image-text datasets that often lack detailed, scene-comprehensive descriptions. The COCONut-PanCap dataset incorporates fine-grained, region-level captions grounded in panoptic segmentation masks, ensuring consistency and improving the detail of generated captions. Through human-edited, densely annotated descriptions, COCONut-PanCap supports improved training of vision-language models (VLMs) for image understanding and generative models for text-to-image tasks. Experimental results demonstrate that COCONut-PanCap significantly boosts performance across understanding and generation tasks, offering complementary benefits to large-scale datasets. This dataset sets a new benchmark for evaluating models on joint panoptic segmentation and grounded captioning tasks, addressing the need for high-quality, detailed image-text annotations in multi-modal learning.
Related papers
- Benchmarking Large Vision-Language Models via Directed Scene Graph for Comprehensive Image Captioning [77.2852342808769]
In this paper, we introduce a detailed caption benchmark, termed as CompreCap, to evaluate the visual context from a directed scene graph view.
We first manually segment the image into semantically meaningful regions according to common-object vocabulary, while also distinguishing attributes of objects within all those regions.
Then directional relation labels of these objects are annotated to compose a directed scene graph that can well encode rich compositional information of the image.
arXiv Detail & Related papers (2024-12-11T18:37:42Z) - What Makes for Good Image Captions? [50.48589893443939]
Our framework posits that good image captions should balance three key aspects: informationally sufficient, minimally redundant, and readily comprehensible by humans.
We introduce the Pyramid of Captions (PoCa) method, which generates enriched captions by integrating local and global visual information.
arXiv Detail & Related papers (2024-05-01T12:49:57Z) - Text Data-Centric Image Captioning with Interactive Prompts [20.48013600818985]
Supervised image captioning approaches have made great progress, but it is challenging to collect high-quality human-annotated image-text data.
This paper proposes a new Text data-centric approach with Interactive Prompts for image Captioning, named TIPCap.
arXiv Detail & Related papers (2024-03-28T07:43:49Z) - FuseCap: Leveraging Large Language Models for Enriched Fused Image
Captions [11.274127953112574]
We propose an automated approach to augmenting existing captions with visual details using "frozen" vision experts.
Our proposed method, FuseCap, fuses the outputs of such vision experts with the original captions using a large language model.
We release this large-scale dataset of enriched image-caption pairs for the community.
arXiv Detail & Related papers (2023-05-28T13:16:03Z) - Fine-grained Image Captioning with CLIP Reward [104.71533106301598]
We propose using CLIP, a multimodal encoder trained on huge image-text pairs from web, to calculate multimodal similarity and use it as a reward function.
We also propose a simple finetuning strategy of the CLIP text encoder to improve grammar that does not require extra text annotation.
In experiments on text-to-image retrieval and FineCapEval, the proposed CLIP-guided model generates more distinctive captions than the CIDEr-optimized model.
arXiv Detail & Related papers (2022-05-26T02:46:09Z) - Injecting Semantic Concepts into End-to-End Image Captioning [61.41154537334627]
We propose a pure vision transformer-based image captioning model, dubbed as ViTCAP, in which grid representations are used without extracting the regional features.
For improved performance, we introduce a novel Concept Token Network (CTN) to predict the semantic concepts and then incorporate them into the end-to-end captioning.
In particular, the CTN is built on the basis of a vision transformer and is designed to predict the concept tokens through a classification task.
arXiv Detail & Related papers (2021-12-09T22:05:05Z) - Exploring Semantic Relationships for Unpaired Image Captioning [40.401322131624866]
We achieve unpaired image captioning by bridging the vision and the language domains with high-level semantic information.
We propose the Semantic Relationship Explorer, which explores the relationships between semantic concepts for better understanding of the image.
The proposed approach boosts five strong baselines under the paired setting, where the most significant improvement in CIDEr score reaches 8%.
arXiv Detail & Related papers (2021-06-20T09:10:11Z) - Alleviating Noisy Data in Image Captioning with Cooperative Distillation [27.623398746616026]
We propose a new technique that combines clean curated datasets with the web-scale automatically extracted captions of the Google Conceptual Captions dataset (GCC)
GCC has poor descriptions of images, but is abundant in size and therefore provides a rich vocabulary resulting in more expressive captions.
arXiv Detail & Related papers (2020-12-21T21:32:28Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
We present a novel image captioning architecture to better explore semantics available in captions and leverage that to enhance both image representation and caption generation.
Our models first construct caption-guided visual relationship graphs that introduce beneficial inductive bias using weakly supervised multi-instance learning.
During generation, the model further incorporates visual relationships using multi-task learning for jointly predicting word and object/predicate tag sequences.
arXiv Detail & Related papers (2020-06-21T14:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.