TD3: Tucker Decomposition Based Dataset Distillation Method for Sequential Recommendation
- URL: http://arxiv.org/abs/2502.02854v2
- Date: Thu, 06 Feb 2025 08:29:46 GMT
- Title: TD3: Tucker Decomposition Based Dataset Distillation Method for Sequential Recommendation
- Authors: Jiaqing Zhang, Mingjia Yin, Hao Wang, Yawen Li, Yuyang Ye, Xingyu Lou, Junping Du, Enhong Chen,
- Abstract summary: This paper introduces textbfTD3, a novel textbfDataset textbfDistillation method within a meta-learning framework.
TD3 distills a fully expressive emphsynthetic sequence summary from original data.
An augmentation technique allows the learner to closely fit the synthetic summary, ensuring an accurate update of it in the emphouter-loop.
- Score: 50.23504065567638
- License:
- Abstract: In the era of data-centric AI, the focus of recommender systems has shifted from model-centric innovations to data-centric approaches. The success of modern AI models is built on large-scale datasets, but this also results in significant training costs. Dataset distillation has emerged as a key solution, condensing large datasets to accelerate model training while preserving model performance. However, condensing discrete and sequentially correlated user-item interactions, particularly with extensive item sets, presents considerable challenges. This paper introduces \textbf{TD3}, a novel \textbf{T}ucker \textbf{D}ecomposition based \textbf{D}ataset \textbf{D}istillation method within a meta-learning framework, designed for sequential recommendation. TD3 distills a fully expressive \emph{synthetic sequence summary} from original data. To efficiently reduce computational complexity and extract refined latent patterns, Tucker decomposition decouples the summary into four factors: \emph{synthetic user latent factor}, \emph{temporal dynamics latent factor}, \emph{shared item latent factor}, and a \emph{relation core} that models their interconnections. Additionally, a surrogate objective in bi-level optimization is proposed to align feature spaces extracted from models trained on both original data and synthetic sequence summary beyond the na\"ive performance matching approach. In the \emph{inner-loop}, an augmentation technique allows the learner to closely fit the synthetic summary, ensuring an accurate update of it in the \emph{outer-loop}. To accelerate the optimization process and address long dependencies, RaT-BPTT is employed for bi-level optimization. Experiments and analyses on multiple public datasets have confirmed the superiority and cross-architecture generalizability of the proposed designs. Codes are released at https://github.com/USTC-StarTeam/TD3.
Related papers
- Enhancing Generalization via Sharpness-Aware Trajectory Matching for Dataset Condensation [37.77454972709646]
We introduce Sharpness-Aware Trajectory Matching (SATM), which enhances the generalization capability of learned synthetic datasets.
Our approach is mathematically well-supported and straightforward to implement along with controllable computational overhead.
arXiv Detail & Related papers (2025-02-03T22:30:06Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities.
We build a novel generative model for link prediction using a dedicated design to decompose the likelihood estimation process via the Bayesian formula.
Our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
arXiv Detail & Related papers (2024-09-13T02:23:55Z) - Hierarchical Features Matter: A Deep Exploration of GAN Priors for Improved Dataset Distillation [51.44054828384487]
We propose a novel parameterization method dubbed Hierarchical Generative Latent Distillation (H-GLaD)
This method systematically explores hierarchical layers within the generative adversarial networks (GANs)
In addition, we introduce a novel class-relevant feature distance metric to alleviate the computational burden associated with synthetic dataset evaluation.
arXiv Detail & Related papers (2024-06-09T09:15:54Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
We propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model.
DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data.
arXiv Detail & Related papers (2024-03-11T14:07:53Z) - Data-iterative Optimization Score Model for Stable Ultra-Sparse-View CT
Reconstruction [2.2336243882030025]
We propose an iterative optimization data scoring model (DOSM) for sparse-view CT reconstruction.
DOSM integrates data consistency into its data consistency element, effectively balancing measurement data and generative model constraints.
We leverage conventional techniques to optimize DOSM updates.
arXiv Detail & Related papers (2023-08-28T09:23:18Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Accelerating Dataset Distillation via Model Augmentation [41.3027484667024]
We propose two model augmentation techniques, i.e. using early-stage models and parameter parameters to learn an informative synthetic set with significantly reduced training cost.
Our method achieves up to 20x speedup and comparable performance on par with state-of-the-art methods.
arXiv Detail & Related papers (2022-12-12T07:36:05Z) - Dataset Distillation via Factorization [58.8114016318593]
We introduce a emphdataset factorization approach, termed emphHaBa, which is a plug-and-play strategy portable to any existing dataset distillation (DD) baseline.
emphHaBa explores decomposing a dataset into two components: data emphHallucination networks and emphBases.
Our method can yield significant improvement on downstream classification tasks compared with previous state of the arts, while reducing the total number of compressed parameters by up to 65%.
arXiv Detail & Related papers (2022-10-30T08:36:19Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.