Behavioral Homophily in Social Media via Inverse Reinforcement Learning: A Reddit Case Study
- URL: http://arxiv.org/abs/2502.02943v1
- Date: Wed, 05 Feb 2025 07:16:45 GMT
- Title: Behavioral Homophily in Social Media via Inverse Reinforcement Learning: A Reddit Case Study
- Authors: Lanqin Yuan, Philipp J. Schneider, Marian-Andrei Rizoiu,
- Abstract summary: This work introduces a novel approach for quantifying user homophily.
We first use an Inverse Reinforcement Learning framework to infer users' policies, then use these policies as a measure of behavioral homophily.
We apply our method to Reddit, conducting a case study across 5.9 million interactions over six years.
- Score: 3.4034704508343028
- License:
- Abstract: Online communities play a critical role in shaping societal discourse and influencing collective behavior in the real world. The tendency for people to connect with others who share similar characteristics and views, known as homophily, plays a key role in the formation of echo chambers which further amplify polarization and division. Existing works examining homophily in online communities traditionally infer it using content- or adjacency-based approaches, such as constructing explicit interaction networks or performing topic analysis. These methods fall short for platforms where interaction networks cannot be easily constructed and fail to capture the complex nature of user interactions across the platform. This work introduces a novel approach for quantifying user homophily. We first use an Inverse Reinforcement Learning (IRL) framework to infer users' policies, then use these policies as a measure of behavioral homophily. We apply our method to Reddit, conducting a case study across 5.9 million interactions over six years, demonstrating how this approach uncovers distinct behavioral patterns and user roles that vary across different communities. We further validate our behavioral homophily measure against traditional content-based homophily, offering a powerful method for analyzing social media dynamics and their broader societal implications. We find, among others, that users can behave very similarly (high behavioral homophily) when discussing entirely different topics like soccer vs e-sports (low topical homophily), and that there is an entire class of users on Reddit whose purpose seems to be to disagree with others.
Related papers
- Homophily Within and Across Groups [0.0]
We present an exponential family model that integrates both local and global homophily.
We show how higher-order assortative mixing influences network dynamics.
arXiv Detail & Related papers (2024-12-10T20:17:04Z) - Structure and dynamics of growing networks of Reddit threads [0.0]
We study a Reddit community in which people participate to judge or be judged with respect to some behavior.
We model threads of this community as complex networks of user interactions growing in time.
We show that the evolution of Reddit networks differ from other real social networks, despite falling in the same category.
arXiv Detail & Related papers (2024-09-06T07:53:33Z) - Dynamics of Ideological Biases of Social Media Users [0.0]
We show that the evolution of online platform-wide opinion groups is driven by the desire to hold popular opinions.
We focus on two social media: Twitter and Parler, on which we tracked the political biases of their users.
arXiv Detail & Related papers (2023-09-27T19:39:07Z) - Modeling Random Networks with Heterogeneous Reciprocity [9.630755176298056]
We develop methodology to model the diverse reciprocal behavior in growing social networks.
We present a preferential attachment model with heterogeneous reciprocity that imitates the attraction users have for popular users.
We apply the presented methods to the analysis of a Facebook wallpost network where users have non-uniform reciprocal behavior patterns.
arXiv Detail & Related papers (2023-08-19T21:21:25Z) - Self-supervised Hypergraph Representation Learning for Sociological
Analysis [52.514283292498405]
We propose a fundamental methodology to support the further fusion of data mining techniques and sociological behavioral criteria.
First, we propose an effective hypergraph awareness and a fast line graph construction framework.
Second, we propose a novel hypergraph-based neural network to learn social influence flowing from users to users.
arXiv Detail & Related papers (2022-12-22T01:20:29Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Social Practice Cards: Research material to study social contexts as
interwoven practice constellations [24.317510246082207]
Social contexts are dynamic and shaped by the situated practices of everyone involved.
This material can be used to further explore how different, co-located practices relate to each other.
arXiv Detail & Related papers (2022-05-03T19:59:16Z) - This Must Be the Place: Predicting Engagement of Online Communities in a
Large-scale Distributed Campaign [70.69387048368849]
We study the behavior of communities with millions of active members.
We develop a hybrid model, combining textual cues, community meta-data, and structural properties.
We demonstrate the applicability of our model through Reddit's r/place a large-scale online experiment.
arXiv Detail & Related papers (2022-01-14T08:23:16Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - Information Consumption and Social Response in a Segregated Environment:
the Case of Gab [74.5095691235917]
This work provides a characterization of the interaction patterns within Gab around the COVID-19 topic.
We find that there are no strong statistical differences in the social response to questionable and reliable content.
Our results provide insights toward the understanding of coordinated inauthentic behavior and on the early-warning of information operation.
arXiv Detail & Related papers (2020-06-03T11:34:25Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
We introduce an operational definition of echo chambers and perform a massive comparative analysis on 1B pieces of contents produced by 1M users on four social media platforms.
We infer the leaning of users about controversial topics and reconstruct their interaction networks by analyzing different features.
We find support for the hypothesis that platforms implementing news feed algorithms like Facebook may elicit the emergence of echo-chambers.
arXiv Detail & Related papers (2020-04-20T20:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.