Observation of slow relaxation due to Hilbert space fragmentation in strongly interacting Bose-Hubbard chains
- URL: http://arxiv.org/abs/2502.02959v1
- Date: Wed, 05 Feb 2025 07:52:58 GMT
- Title: Observation of slow relaxation due to Hilbert space fragmentation in strongly interacting Bose-Hubbard chains
- Authors: Kantaro Honda, Yosuke Takasu, Shimpei Goto, Hironori Kazuta, Masaya Kunimi, Ippei Danshita, Yoshiro Takahashi,
- Abstract summary: We experimentally investigate the one-dimensional Bose-Hubbard system with neither disorder nor tilt potential.
We find that the numbers of singlons and doublons are conserved during the dynamics, indicating HSF as a mechanism of the observed slow relaxation.
- Score: 0.0
- License:
- Abstract: While isolated quantum systems generally thermalize after long-time evolution, there are several exceptions defying thermalization. A notable mechanism of such nonergodicity is the Hilbert space fragmentation (HSF), where the Hamiltonian matrix splits into an exponentially large number of sectors due to the presence of nontrivial conserved quantities. Using ultracold gases, here we experimentally investigate the one-dimensional Bose-Hubbard system with neither disorder nor tilt potential, which has been predicted to exhibit HSF caused by a strong interatomic interaction. Specifically, we analyze far-from-equilibrium dynamics starting from a charge-density wave of doublons (atoms in doubly occupied sites) in a singlon and doublon-resolved manner to reveal a slowing-down of the relaxation in a strongly interacting regime. We find that the numbers of singlons and doublons are conserved during the dynamics, indicating HSF as a mechanism of the observed slow relaxation. Our results provide the first experimental confirmation of the conserved quantities responsible for HSF.
Related papers
- Emergent Fracton Hydrodynamics in the Fractional Quantum Hall Regime of Ultracold Atoms [41.94295877935867]
We show that in the lowest Landau level the system generically relaxes subdiffusively.
The slow relaxation is understood from emergent conservation laws of the total charge.
We discuss the prospect of rotating quantum gases as well as ultracold atoms in optical lattices for observing this unconventional relaxation dynamics.
arXiv Detail & Related papers (2024-10-09T18:00:02Z) - Observation of Hilbert-space fragmentation and fractonic excitations in two-dimensional Hubbard systems [0.0]
We experimentally observe Hilbert space fragmentation (HSF) in a two-dimensional tilted Bose-Hubbard model.
We find uniform initial states with equal particle number and energy differ strikingly in their relaxation dynamics.
Our results mark the first observation of HSF beyond one dimension, as well as the concomitant direct observation of fractons.
arXiv Detail & Related papers (2024-04-23T10:22:40Z) - Hilbert Space Fragmentation and Subspace Scar Time-Crystallinity in
Driven Homogeneous Central-Spin Models [5.9969431417128405]
We study the stroboscopic non-equilibrium quantum dynamics of periodically kicked Hamiltonians involving homogeneous central-spin interactions.
The system exhibits a strong fragmentation of Hilbert space into four-dimensional Floquet-Krylov subspaces.
arXiv Detail & Related papers (2024-02-28T02:30:40Z) - Floquet Engineering of Hilbert Space Fragmentation in Stark Lattices [3.938836199747998]
The concept of Hilbert space fragmentation (HSF) has recently been put forward as a routine to break quantum ergodicity.
We propose a scheme to tune the HSF in a one-dimensional tilted lattice of interacting spinless fermions with periodically driven tunneling.
arXiv Detail & Related papers (2023-11-20T13:58:18Z) - Hilbert Space Fragmentation in Open Quantum Systems [0.7412445894287709]
We investigate the phenomenon of Hilbert space fragmentation (HSF) in open quantum systems.
We find that it can stabilize highly entangled steady states.
arXiv Detail & Related papers (2023-05-05T18:00:06Z) - Persistent-current states originating from the Hilbert space
fragmentation in momentum space [0.0]
We show that persistent-current states emerge due to the HSF in the momentum space.
We also investigate the stability of the PC states against the random potential, which breaks the structure of the HSF.
arXiv Detail & Related papers (2022-11-01T23:39:54Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Prolonged orbital relaxation by locally modified phonon density of
states for SiV$^-$ center in nanodiamonds [45.82374977939355]
Coherent quantum systems are a key resource for emerging quantum technology.
A novel method is presented to prolong the orbital relaxation with a locally modified phonon density of states.
arXiv Detail & Related papers (2021-07-30T14:14:26Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.