Artificial Intelligence and Legal Analysis: Implications for Legal Education and the Profession
- URL: http://arxiv.org/abs/2502.03487v1
- Date: Tue, 04 Feb 2025 19:50:48 GMT
- Title: Artificial Intelligence and Legal Analysis: Implications for Legal Education and the Profession
- Authors: Lee Peoples,
- Abstract summary: This article reports the results of a study examining the ability of legal and nonlegal Large Language Models to perform legal analysis.
The results show that LLMs can conduct basic IRAC analysis, but are limited by brief responses lacking detail, an inability to commit to answers, false confidence, and hallucinations.
- Score: 0.0
- License:
- Abstract: This article reports the results of a study examining the ability of legal and non-legal Large Language Models to perform legal analysis using the Issue-Rule-Application-Conclusion framework. LLMs were tested on legal reasoning tasks involving rule analysis and analogical reasoning. The results show that LLMs can conduct basic IRAC analysis, but are limited by brief responses lacking detail, an inability to commit to answers, false confidence, and hallucinations. The study compares legal and nonlegal LLMs, identifies shortcomings, and explores traits that may hinder their ability to think like a lawyer. It also discusses the implications for legal education and practice, highlighting the need for critical thinking skills in future lawyers and the potential pitfalls of overreliance on artificial intelligence AI resulting in a loss of logic, reasoning, and critical thinking skills.
Related papers
- Legal Evalutions and Challenges of Large Language Models [42.51294752406578]
We use the OPENAI o1 model as a case study to evaluate the performance of large models in applying legal provisions.
We compare current state-of-the-art LLMs, including open-source, closed-source, and legal-specific models trained specifically for the legal domain.
arXiv Detail & Related papers (2024-11-15T12:23:12Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
We take a closer look at the self-verification abilities of large language models (LLMs) in the context of logical reasoning.
Our main findings suggest that existing LLMs could struggle to identify fallacious reasoning steps accurately and may fall short of guaranteeing the validity of self-verification methods.
arXiv Detail & Related papers (2023-11-14T07:13:10Z) - Can ChatGPT Perform Reasoning Using the IRAC Method in Analyzing Legal
Scenarios Like a Lawyer? [14.103170412148584]
ChatGPT is applied to perform analysis on the corpus using the IRAC method.
Each scenario in the corpus is annotated with a complete IRAC analysis in a semi-structured format.
In addition, we conducted the first empirical assessment of ChatGPT for IRAC analysis in order to understand how well it aligns with the analysis of legal professionals.
arXiv Detail & Related papers (2023-10-23T12:51:49Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
Large language models (LLMs) have demonstrated great potential for domain-specific applications.
Recent disputes over GPT-4's law evaluation raise questions concerning their performance in real-world legal tasks.
We design practical baseline solutions based on LLMs and test on the task of legal judgment prediction.
arXiv Detail & Related papers (2023-10-18T07:38:04Z) - Large Language Models as Tax Attorneys: A Case Study in Legal
Capabilities Emergence [5.07013500385659]
This paper explores Large Language Models' (LLMs) capabilities in applying tax law.
Our experiments demonstrate emerging legal understanding capabilities, with improved performance in each subsequent OpenAI model release.
Findings indicate that LLMs, particularly when combined with prompting enhancements and the correct legal texts, can perform at high levels of accuracy but not yet at expert tax lawyer levels.
arXiv Detail & Related papers (2023-06-12T12:40:48Z) - From LSAT: The Progress and Challenges of Complex Reasoning [56.07448735248901]
We study the three challenging and domain-general tasks of the Law School Admission Test (LSAT), including analytical reasoning, logical reasoning and reading comprehension.
We propose a hybrid reasoning system to integrate these three tasks and achieve impressive overall performance on the LSAT tests.
arXiv Detail & Related papers (2021-08-02T05:43:03Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
We release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding.
We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering.
arXiv Detail & Related papers (2021-05-09T09:39:25Z) - Legal Sentiment Analysis and Opinion Mining (LSAOM): Assimilating
Advances in Autonomous AI Legal Reasoning [0.0]
Legal Sentiment Analysis and Opinion Mining (LSAOM) consists of two often intertwined phenomena and actions underlying legal discussions and narratives.
Efforts to undertake LSAOM have historically been performed by human hand and cognition.
Advances in Artificial Intelligence (AI) involving especially Natural Language Processing (NLP) and Machine Learning (ML) are bolstering how automation can systematically perform either or both of Sentiment Analysis and Opinion Mining.
arXiv Detail & Related papers (2020-10-02T04:15:21Z) - Authorized and Unauthorized Practices of Law: The Role of Autonomous
Levels of AI Legal Reasoning [0.0]
The legal field has sought to define Authorized Practices of Law (APL) versus Unauthorized Practices of Law (UPL)
This paper explores a newly derived instrumental grid depicting the key characteristics underlying APL and UPL as they apply to the AILR autonomous levels.
arXiv Detail & Related papers (2020-08-19T18:35:58Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
Legal Artificial Intelligence (LegalAI) focuses on applying the technology of artificial intelligence, especially natural language processing, to benefit tasks in the legal domain.
This paper introduces the history, the current state, and the future directions of research in LegalAI.
arXiv Detail & Related papers (2020-04-25T14:45:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.