Stein Discrepancy for Unsupervised Domain Adaptation
- URL: http://arxiv.org/abs/2502.03587v2
- Date: Fri, 07 Feb 2025 02:32:48 GMT
- Title: Stein Discrepancy for Unsupervised Domain Adaptation
- Authors: Anneke von Seeger, Dongmian Zou, Gilad Lerman,
- Abstract summary: Unsupervised domain adaptation (UDA) leverages information from a labeled source dataset to improve accuracy on a related but unlabeled target dataset.
Previous methods have employed distances such as Wasserstein distance and maximum mean discrepancy.
We propose a novel UDA method that uses Stein discrepancy to measure the distance between source and target domains.
- Score: 12.125503552019504
- License:
- Abstract: Unsupervised domain adaptation (UDA) leverages information from a labeled source dataset to improve accuracy on a related but unlabeled target dataset. A common approach to UDA is aligning representations from the source and target domains by minimizing the distance between their data distributions. Previous methods have employed distances such as Wasserstein distance and maximum mean discrepancy. However, these approaches are less effective when the target data is significantly scarcer than the source data. Stein discrepancy is an asymmetric distance between distributions that relies on one distribution only through its score function. In this paper, we propose a novel UDA method that uses Stein discrepancy to measure the distance between source and target domains. We develop a learning framework using both non-kernelized and kernelized Stein discrepancy. Theoretically, we derive an upper bound for the generalization error. Numerical experiments show that our method outperforms existing methods using other domain discrepancy measures when only small amounts of target data are available.
Related papers
- Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Certainty Volume Prediction for Unsupervised Domain Adaptation [35.984559137218504]
Unsupervised domain adaptation (UDA) deals with the problem of classifying unlabeled target domain data.
We propose a novel uncertainty-aware domain adaptation setup that models uncertainty as a multivariate Gaussian distribution in feature space.
We evaluate our proposed pipeline on challenging UDA datasets and achieve state-of-the-art results.
arXiv Detail & Related papers (2021-11-03T11:22:55Z) - Dealing with Distribution Mismatch in Semi-supervised Deep Learning for
Covid-19 Detection Using Chest X-ray Images: A Novel Approach Using Feature
Densities [0.6882042556551609]
Semi-supervised deep learning is an attractive alternative to large labelled datasets.
In real-world usage settings, an unlabelled dataset might present a different distribution than the labelled dataset.
This results in a distribution mismatch between the unlabelled and labelled datasets.
arXiv Detail & Related papers (2021-08-17T00:35:43Z) - Understanding the Limits of Unsupervised Domain Adaptation via Data
Poisoning [66.80663779176979]
Unsupervised domain adaptation (UDA) enables cross-domain learning without target domain labels.
We show the insufficiency of minimizing source domain error and marginal distribution mismatch for a guaranteed reduction in the target domain error.
Motivated from this, we propose novel data poisoning attacks to fool UDA methods into learning representations that produce large target domain errors.
arXiv Detail & Related papers (2021-07-08T15:51:14Z) - KL Guided Domain Adaptation [88.19298405363452]
Domain adaptation is an important problem and often needed for real-world applications.
A common approach in the domain adaptation literature is to learn a representation of the input that has the same distributions over the source and the target domain.
We show that with a probabilistic representation network, the KL term can be estimated efficiently via minibatch samples.
arXiv Detail & Related papers (2021-06-14T22:24:23Z) - OVANet: One-vs-All Network for Universal Domain Adaptation [78.86047802107025]
Existing methods manually set a threshold to reject unknown samples based on validation or a pre-defined ratio of unknown samples.
We propose a method to learn the threshold using source samples and to adapt it to the target domain.
Our idea is that a minimum inter-class distance in the source domain should be a good threshold to decide between known or unknown in the target.
arXiv Detail & Related papers (2021-04-07T18:36:31Z) - Open-Set Hypothesis Transfer with Semantic Consistency [99.83813484934177]
We introduce a method that focuses on the semantic consistency under transformation of target data.
Our model first discovers confident predictions and performs classification with pseudo-labels.
As a result, unlabeled data can be classified into discriminative classes coincided with either source classes or unknown classes.
arXiv Detail & Related papers (2020-10-01T10:44:31Z) - Keep it Simple: Image Statistics Matching for Domain Adaptation [0.0]
Domain Adaptation (DA) is a technique to maintain detection accuracy when only unlabeled images are available of the target domain.
Recent state-of-the-art methods try to reduce the domain gap using an adversarial training strategy.
We propose to align either color histograms or mean and covariance of the source images towards the target domain.
In comparison to recent methods, we achieve state-of-the-art performance using a much simpler procedure for the training.
arXiv Detail & Related papers (2020-05-26T07:32:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.