First-ish Order Methods: Hessian-aware Scalings of Gradient Descent
- URL: http://arxiv.org/abs/2502.03701v1
- Date: Thu, 06 Feb 2025 01:22:23 GMT
- Title: First-ish Order Methods: Hessian-aware Scalings of Gradient Descent
- Authors: Oscar Smee, Fred Roosta, Stephen J. Wright,
- Abstract summary: A key limitation of gradient descent is its lack of natural scaling.
By accounting for curvature, our adaptive, Hessian-aware scaling method ensures a local unit step size.
We show that our method converges globally under a significantly weaker version of the standard Lipschitz assumption.
- Score: 11.125968799758436
- License:
- Abstract: Gradient descent is the primary workhorse for optimizing large-scale problems in machine learning. However, its performance is highly sensitive to the choice of the learning rate. A key limitation of gradient descent is its lack of natural scaling, which often necessitates expensive line searches or heuristic tuning to determine an appropriate step size. In this paper, we address this limitation by incorporating Hessian information to scale the gradient direction. By accounting for the curvature of the function along the gradient, our adaptive, Hessian-aware scaling method ensures a local unit step size guarantee, even in nonconvex settings. Near a local minimum that satisfies the second-order sufficient conditions, our approach achieves linear convergence with a unit step size. We show that our method converges globally under a significantly weaker version of the standard Lipschitz gradient smoothness assumption. Even when Hessian information is inexact, the local unit step size guarantee and global convergence properties remain valid under mild conditions. Finally, we validate our theoretical results empirically on a range of convex and nonconvex machine learning tasks, showcasing the effectiveness of the approach.
Related papers
- Gradient-Variation Online Learning under Generalized Smoothness [56.38427425920781]
gradient-variation online learning aims to achieve regret guarantees that scale with variations in gradients of online functions.
Recent efforts in neural network optimization suggest a generalized smoothness condition, allowing smoothness to correlate with gradient norms.
We provide the applications for fast-rate convergence in games and extended adversarial optimization.
arXiv Detail & Related papers (2024-08-17T02:22:08Z) - An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes [17.804065824245402]
In machine learning applications, each loss function is non-negative and can be expressed as the composition of a square and its real-valued square root.
We show how to apply the Gauss-Newton method or the Levssquardt method to minimize the average of smooth but possibly non-negative functions.
arXiv Detail & Related papers (2024-07-05T08:53:06Z) - Directional Smoothness and Gradient Methods: Convergence and Adaptivity [16.779513676120096]
We develop new sub-optimality bounds for gradient descent that depend on the conditioning of the objective along the path of optimization.
Key to our proofs is directional smoothness, a measure of gradient variation that we use to develop upper-bounds on the objective.
We prove that the Polyak step-size and normalized GD obtain fast, path-dependent rates despite using no knowledge of the directional smoothness.
arXiv Detail & Related papers (2024-03-06T22:24:05Z) - Non-Uniform Smoothness for Gradient Descent [5.64297382055816]
We introduce a local first-order smoothness oracle (LFSO) which generalizes the Lipschitz continuous gradient smoothness condition.
We show that this oracle can encode all relevant problem information for tuning stepsizes for a suitably modified gradient descent method.
We also show that LFSOs in this modified first-order method can yield global linear convergence rates for non-strongly convex problems with extremely flat minima.
arXiv Detail & Related papers (2023-11-15T00:44:08Z) - Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
We propose a deep learning approach to learn gradient vectors with consistent orientation from 3D point clouds for normal estimation.
We learn an angular distance field based on local plane geometry to refine the coarse gradient vectors.
Our method efficiently conducts global gradient approximation while achieving better accuracy and ability generalization of local feature description.
arXiv Detail & Related papers (2023-09-17T08:35:11Z) - Sampling from Gaussian Process Posteriors using Stochastic Gradient
Descent [43.097493761380186]
gradient algorithms are an efficient method of approximately solving linear systems.
We show that gradient descent produces accurate predictions, even in cases where it does not converge quickly to the optimum.
Experimentally, gradient descent achieves state-of-the-art performance on sufficiently large-scale or ill-conditioned regression tasks.
arXiv Detail & Related papers (2023-06-20T15:07:37Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Local Quadratic Convergence of Stochastic Gradient Descent with Adaptive
Step Size [29.15132344744801]
We establish local convergence for gradient descent with adaptive step size for problems such as matrix inversion.
We show that these first order optimization methods can achieve sub-linear or linear convergence.
arXiv Detail & Related papers (2021-12-30T00:50:30Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
In this work, we seek to balance the fact that attenuating step-size is required for exact convergence with the fact that constant step-size learns faster in time up to an error.
Rather than fixing the minibatch the step-size at the outset, we propose to allow parameters to evolve adaptively.
arXiv Detail & Related papers (2020-07-02T16:02:02Z) - On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization [80.03647903934723]
We prove adaptive gradient methods in expectation of gradient convergence methods.
Our analyses shed light on better adaptive gradient methods in optimizing non understanding gradient bounds.
arXiv Detail & Related papers (2018-08-16T20:25:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.