Boosting Knowledge Graph-based Recommendations through Confidence-Aware Augmentation with Large Language Models
- URL: http://arxiv.org/abs/2502.03715v1
- Date: Thu, 06 Feb 2025 02:06:48 GMT
- Title: Boosting Knowledge Graph-based Recommendations through Confidence-Aware Augmentation with Large Language Models
- Authors: Rui Cai, Chao Wang, Qianyi Cai, Dazhong Shen, Hui Xiong,
- Abstract summary: Large Language Models (LLMs) offer a promising way to improve the quality and relevance of Knowledge Graphs for recommendation tasks.
We propose the Confidence-aware KG-based Recommendation Framework with LLM Augmentation (CKG-LLMA), a novel framework that combines KGs and LLMs for recommendation task.
The framework includes: (1) an LLM-based subgraph augmenter for enriching KGs with high-quality information, (2) a confidence-aware message propagation mechanism to filter noisy triplets, and (3) a dual-view contrastive learning method to integrate user-item interactions and KG data.
- Score: 19.28217321004791
- License:
- Abstract: Knowledge Graph-based recommendations have gained significant attention due to their ability to leverage rich semantic relationships. However, constructing and maintaining Knowledge Graphs (KGs) is resource-intensive, and the accuracy of KGs can suffer from noisy, outdated, or irrelevant triplets. Recent advancements in Large Language Models (LLMs) offer a promising way to improve the quality and relevance of KGs for recommendation tasks. Despite this, integrating LLMs into KG-based systems presents challenges, such as efficiently augmenting KGs, addressing hallucinations, and developing effective joint learning methods. In this paper, we propose the Confidence-aware KG-based Recommendation Framework with LLM Augmentation (CKG-LLMA), a novel framework that combines KGs and LLMs for recommendation task. The framework includes: (1) an LLM-based subgraph augmenter for enriching KGs with high-quality information, (2) a confidence-aware message propagation mechanism to filter noisy triplets, and (3) a dual-view contrastive learning method to integrate user-item interactions and KG data. Additionally, we employ a confidence-aware explanation generation process to guide LLMs in producing realistic explanations for recommendations. Finally, extensive experiments demonstrate the effectiveness of CKG-LLMA across multiple public datasets.
Related papers
- GLTW: Joint Improved Graph Transformer and LLM via Three-Word Language for Knowledge Graph Completion [52.026016846945424]
We propose a new method called GLTW, which encodes the structural information of KGs and merges it with Large Language Models.
Specifically, we introduce an improved Graph Transformer (iGT) that effectively encodes subgraphs with both local and global structural information.
Also, we develop a subgraph-based multi-classification training objective, using all entities within KG as classification objects, to boost learning efficiency.
arXiv Detail & Related papers (2025-02-17T06:02:59Z) - Self-supervised Quantized Representation for Seamlessly Integrating Knowledge Graphs with Large Language Models [17.88134311726175]
We propose a framework to learn and apply quantized codes for each entity, aiming for the seamless integration of Knowledge Graphs with Large Language Models.
Experiment results demonstrate that SSQR outperforms existing unsupervised quantized methods, producing more distinguishable codes.
The fine-tuned LLaMA2 and LLaMA3.1 also have superior performance on KG link prediction and triple classification tasks.
arXiv Detail & Related papers (2025-01-30T03:40:20Z) - Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
Knowledge Graphs (KGs) can serve as reliable knowledge sources for question answering (QA)
We present DoG (Decoding on Graphs), a novel framework that facilitates a deep synergy between LLMs and KGs.
Experiments across various KGQA tasks with different background KGs demonstrate that DoG achieves superior and robust performance.
arXiv Detail & Related papers (2024-10-24T04:01:40Z) - Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models [83.28737898989694]
Large language models (LLMs) struggle with faithful reasoning due to knowledge gaps and hallucinations.
We introduce graph-constrained reasoning (GCR), a novel framework that bridges structured knowledge in KGs with unstructured reasoning in LLMs.
GCR achieves state-of-the-art performance and exhibits strong zero-shot generalizability to unseen KGs without additional training.
arXiv Detail & Related papers (2024-10-16T22:55:17Z) - Comprehending Knowledge Graphs with Large Language Models for Recommender Systems [13.270018897057293]
We propose a novel method called CoLaKG to improve knowledge graphs.
CoLaKG uses large language models (LLMs) to improve KG-based recommendations.
arXiv Detail & Related papers (2024-10-16T04:44:34Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
We propose a training-free method called Generate-on-Graph (GoG) to generate new factual triples while exploring Knowledge Graphs (KGs)
GoG performs reasoning through a Thinking-Searching-Generating framework, which treats LLM as both Agent and KG in IKGQA.
arXiv Detail & Related papers (2024-04-23T04:47:22Z) - Knowledge Graph Large Language Model (KG-LLM) for Link Prediction [43.55117421485917]
We introduce the Knowledge Graph Large Language Model (KG-LLM), a novel framework that leverages large language models (LLMs) for knowledge graph tasks.
We first convert structured knowledge graph data into natural language and then use these natural language prompts to fine-tune LLMs.
To show the efficacy of the KG-LLM Framework, we fine-tune three leading LLMs within this framework, including Flan-T5, LLaMa2 and Gemma.
arXiv Detail & Related papers (2024-03-12T04:47:29Z) - On the Sweet Spot of Contrastive Views for Knowledge-enhanced
Recommendation [49.18304766331156]
We propose a new contrastive learning framework for KG-enhanced recommendation.
We construct two separate contrastive views for KG and IG, and maximize their mutual information.
Extensive experimental results on three real-world datasets demonstrate the effectiveness and efficiency of our method.
arXiv Detail & Related papers (2023-09-23T14:05:55Z) - Retrieve-Rewrite-Answer: A KG-to-Text Enhanced LLMs Framework for
Knowledge Graph Question Answering [16.434098552925427]
We study the KG-augmented language model approach for solving the knowledge graph question answering (KGQA) task.
We propose an answer-sensitive KG-to-Text approach that can transform KG knowledge into well-textualized statements.
arXiv Detail & Related papers (2023-09-20T10:42:08Z) - Unifying Large Language Models and Knowledge Graphs: A Roadmap [61.824618473293725]
Large language models (LLMs) are making new waves in the field of natural language processing and artificial intelligence.
Knowledge Graphs (KGs), Wikipedia and Huapu for example, are structured knowledge models that explicitly store rich factual knowledge.
arXiv Detail & Related papers (2023-06-14T07:15:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.